MTU - 130
copos
Channel-Oriented Disk Operating System

Release 2.0

USER MANUAL

January 1982 REV. B

TABLE OF CONTENTS

Introduction

............................... e Ty ey |
Specifications and Summary of Features............. Pttt e anar e 1-3
Selection and Care of Diskettes................ Siaieiazasene mteve ERetate winle SHaLeEASHITE A 1=5

CODOS System Concepts......... B S SRR U 2 £ T S, pwseraiese aeie: ainiete wiaTestesese aieve sre; SEHE T
CRANMNE IS o onen wms commmmman snsmmss e wmswesamess EEvwseidss TSR SR egaaTE A5E ey 2m2
Devices........ W PR § BRI A neromamone s VR - .
FAL@B 10 worimisssvons emisseiainia siain ssstacszareis ey st e S S50 e ¢ Ch s baens 2wl
Monitor and Commands.......ceenveuaran aUE o ¥ PeserNsatetentisnensennae e 25

Monitor Command Descriptions............ WE SIS S D0 a0 ik B s .

CODOS Utility Program Descriptions...... wo seE wETs ST SRR OSSR SR o det

Interfacing User-Written Assembly-Language Programs to CODOS........convneen. 5-1

SVC: DaRCPIpLIONS i semvrss oo SEaasisis SOk S0 Sl STa b finn nassmmoninie weo B

16-Bit Arithmetic Pseudo-processor (SVC #27).......0.... b TR SRR BN T 7-1

Keyboard and Text Display I/0 Driver..sssrsiscisececenescsssrocecarancananann 8-1

Graphics Display I/0 Driver...... weie Wisrere migls SIOTOTHIEIA BURKSIOSIHS 6 Ty 9-1

System Customization.....vivevevirirenvinnnennns e — S S i pewvserans Yo
Disk Drive Parameler S, . ees vt rrsonstsacstteseossonssonceseencosonananensa 10-2
Adding a Standard Printerc.ciicieiinnnnn, S — 10-6
Writing and Adding Your Own I/0 Drivers.......... B [A
STARTUP.J Flle. .o sisnamwi e veadanioe Pse It s asEEts et unan e 10-18
I/0 Driver Parameters.......cvivievevnvnnacaas o sEausiasstae aduTRULnten SPERR SLSTITRURSONRTE 10-20

APPENDICES

A. System Error MessageS.......... F et e et e e o i i eaadvene s aren s rane A-1

B. Internal File Formats.............. vin wiwiaie Riwte wiee NARinSe MBIS SIRISINIRIRT IGHE e vess B=1

C: . Bootatrap Loader PROMwu e snte civwmiian soniaien sbls Seieiios sule site s o huiiig.e C=1

D. Sample Program: Fast, Interrupt-Driven, Direct-to-Disk Data Aquisition... D-1

E. Addresses of System Parameters.................... P

F. Memory Maps.....ooevvereanerenncnoannnns aeiacene stare stwilns wite wie Aiata ey Ty

G. Syntax Diagrams for built=in Commands,uue e eeeeonneneoensnnsoeaanesas G-1

H. MTU-130 Character Code Chart.................. BésabIminES wuaka mfstells wHike Sisteavstiets sxsieth H-1

I. Using Extended Memory Addressing..........ceeeeriieenenencconossonecsososns I-1

J. Effect of console interrupt and reseb....veveivisnennnnsss " T ARG Sk 8 ves J=1

K. Non-Overlay CODOS CommandsS....vvuvivessrvenanenaeas e tereeseras s K-1

CHAPTER 1.

INTRODUCTION TC CODOS

CODOS (Channel-Oriented Disk Operating System) is an extremely powerful and
versatile disk operating system for the MTU-130 microcomputer. It is a program
which provides all the necessary functions for managing the resources of the
MTU-130 computer, and includes a Conscle Monitor for direct contreol of the system
from the keyboard. CODOS provides a single-user operating system with exceptional
levels of performance and reliability. The system is designed from the ground up
for integration with the MTU-130%'s Disk Controller and takes full advantage of its
many enginesring achievements,

CODOS is loaded from disk into memory automatically on power-up by the on-board
bootstrap loader PROM {(Programmable Read-Unly Memory). Loading the system takes
about one second, after which CODOS enablez the hardware write-protect on the
igystem" 8K of memory in order to prevent an errant user program from inadvertently
"erazhing” the system by accidently writing inte system memory. Once loaded into
memory, the CODOS Monitor assumes control. The Monitor first reads a file of
commands from a special "STARTUP" file on disk. This STARTUP file allows any
desired list of programs or Monitor commands to be executed automatically withouu
operator intervention when the system is powered-up, facilitating turnkey applica-

Wnen all the commands on the STARTUP file have been completed, the CODOS
accepte addition
m

commands from the operator in an interactive mode.
- commands allow you to execube prograns, store or retrieve files from disk,
examine or modify various system atiributes, ete. For example, toc execute your
inventory-management program, you might type "INVENTORY", and the file named INVEN~-
TORY would be located on the disk by CODOS, loaded into memory, and executed. This
type of program is called a "User-defined command”.

The CODOS Monitor provides 326 built-in commands with free-format input. These
commancs are quite versatile., For example, the command "TYPE MYTEXT" will display
the contents of the file called MYTEXT on the Console, "TYPE MYFILE P" will print
“he file on a line printer, and "TYPE MYFILE YOURFILE:1" will create a duplicate
copy of the file with a new name on disy drive 1. If you make a mistake, English-
language error messages such as "FILE NEEDED WAS NOT FOUND" help pinpoint your
arrors quickly. An almost unlimited number of Ussr-defired commands can be added
tn the built-in commands. For example, typing "SAVE FFT 2000 2340" creates a new
User-Command called YFET" which executes using memory locations $2000 through
$2340, Once defined, this command can be executed by merely typing its name as
input to the Monitor. Arguments may also be passed to user-defined Commands. For
example, "FFT NEWDATA" executes the User-command FFT with the argument NEWDATA.
Any kind of commands can also be read from disk files or other devices, allowing
for BATCE processing. For example, +typing "DO TUESDAYJOB.J" would tell CODOS te
read and execute 2ll the Monitor commands found om the file called "TUESDAYJOB.J".

The convenience of CODOS has not been gained at the expense of efficiency.
Disk operations are much faster than on competetive systems. For example, CODOS
can typically locate, load, and begin execution of a 32K byte program in 3 seconds.
CODOS uses relatively little memory and address space because it is written entire-
1y in optimized machine language and uses over 15 overlays. These overlays are
automatically loaded into memory only when needed. This loading operation occurs
so fast that it is generally imperceptible to the operator, and provides the
functionality of z much larger system in less than 12K bytes.

CODOS provides true device-independent I-0 over logical "channels", as found in
many mainframe computers. A program can output to a printer, display, or disk file
with equal ease. Since I-0O channels can be assigned by a Monitor command, prograns
can access different devices or files without modification. Disk I-O is completely
transparent to application programs, which do not need to provide buffers, "File
Control Blocks", or other artifices in order to do disk I-0. 4 disk file can be
randomly accessed at any position in the file with one disk access or less. Disk
files may be as large as the remaining space on the disk, and can be inereased in
size at will. Unlike many other systems, no "compaction" is needed.

Both single and double-sided 8 inch disk drives may be used. CODOS will aubto-
matically use both sides of a double-sided disk, and only one side of a single-
sided disk in a double-sided drive, allowing the double-sided owner complete
flexibility in reading or writing both single and double-sided disks. Single and
double-~sided drives may be freely mixed on the same system. Up to four drives may

be used, allowing up to a whopping four megabytes of formatted online storage using
double~sided drives.

Interfacing for user-written Assembly-language programs is provided in the form
of "Supervisor Call" Pseudo-instructions (SVCs), which simplify program development
and enhance portability among different CODOS-based systems. Programs using SVCs
may usually be exchanged between the MTU-130 and KIM, 3YM, AIM-65, and PET compu-
ters using CODOS without modification. Many examples of 3VC usage are given in
sections 5 and 6, and a complete demonstration program is provided in Appendix D
which illustrates CODOS's ability to perform high-speed, direct-to-disk data agqui-
sition using interrupts.

in addition to the built-in Monitor commands, several Utility programs are
provided. A FORMAT Utility initializes new disks and erases old disks. It «can bte
used +to convert any scft-sectored disk to CODOS format. If desired, the FORMAT
Utility can thoroughly test disks for defective sectors. If bad sectors are found,
they are bypassed automatically by the system when allocating disk space so that
the disk ean still be used without errors. File copying utilities are provided for
both single and multiple-drive systems, The COPYF Utility can copy files individ-
wlly, copy in groups, or copy an entire disk. For example, typing "COPYF STUFFY
copies only the file called "STUFF" from drive O to drive 1, “COPYF OLD¥®.7" copies
all file names which begin with "OLD", and "COPYF" will simply copy all files which
do not already exist on the destination disk.

Extensive provisions have been made for "custoemizing" CODOS to your particular
needs. An interactive utility program called SYSGENDEVICE is provided for adding
additional devices to your system (such as a line printer). Once devices have been
added to the system, they can be assigned to any CODOS I-0 channels at will. &
second Utility program is used for optimizing the performance of your disk drives.
Tables are provided detailing the system memory map and the location of Kkey system
variables.

Be sure to fill out the system registration card that came with your MTU-130
and return it to the factory. This card assures that you will receive announce-
ments of future CODOS upgrades, changes, and new software offerings as they become
available.

IMPORTANT NOTE
If this is the first time vour MTU-130 has been used please refer to the First

Time Power-lUp section of the Setup and Installation manual at the front of your
manu..l binder for first time use procedures.

1-2

CODOS 2.0 SPECIFICATIONS AND SUMMARY OF FEATURES
DISK TYPE: 8 inch Shugart-compatible {loppy disk, single or double-sided.
NUMBER OF DRIVES: One to four. BSingle and double-sided drives may be mixed.
CONTROLLER REQUIRED: MTU K-1013 Floppy Disk Controller/16-K RAM Board.

DATA RECORDING TECHNIQUE: MFM double density; IBM-compatible soft-sectors, 256
bybes per sector, 26 sectors per track, 77 tracks per side.

MAXIMUM FORMATTED CAPACITY: 4 Megabytes (4 double-sided drives).

MAXIMUM NUMBER OF FILES: 2U7 per disk.

MAXIMUM FILE SIZE: 500K bytes, single-sided; 1M byte, double sided disk,

FILE NAMES: 2 to 12 characters with optional l=character extension denobing type.

NUMBER OF I-0 DATA CHANNELS: 10. Up te 8 may be assigned simultanecusly
disk files. All channels are bi-directional.

te active

USER RAM REQUIRED FOR OQPEN FILZ: None.

MINIMUM SYSTEM MEMORY REQUIREMENTS: Normally uses the top 16K of memory system
residence, user buffers, and standard 1/C drivers. Uses locations $0200-$C6FF on
the CPU board for system parameters, Can be reduced to 10K or less if necessary.

DISK OVERHEAD: For single-side drives, all of +track 0 and 12 plus sectors 0
d

I d
through 5 of track 13 are used for the system and directory. For two-sided drives,
sectors O though 25 of track 0 and sectors 0 through 31 of track 12 are used.

“ILE SPACE ALLOCATION: Files are dynamically allocated using a unique inverted list
allocation method which requires no "compaction".

FILE ORGANIZATION: Files consist of an arbitrarily large array of bytes, accessible
at any position. Files may be appended at any time.

RESERVED CODES ON FILES: Nene,

F

L3 ACCESS METHODS: Seguential or true random access. Any byte in the file can be
sele

ctively accessed with one disk access.

RECORD SIZE FOR FILE ACCESS: Any size desired, 1 to 65,534 bytes, variable within
the same file.

TRANSFER METHOD: Direct Memory Access (DMA).
CYCLES LOST DURING DMA TRANSFER: None.
AVERAGE CONTINUOUS THROUGHPUT RATE: 19,600 bytes per seccnd, typical.

INTERRUPT SUFPORT: IRQ and NMI are both fully available to user at all times.
Interrupts are permitted during disk acecess without harm.

BOOTSTRAP LOADER: 256 byte PROM.

SYSTEM MONITOR: 36 built-in commands. User Commands may be added at wili.

MONITOR DIALOG: Commands may be entered directly from the Console keyboard or from
any I-0 device including disk files, giving a BATCH capability. STARTUP file is
executed automatically on power-up.

COMMAND FORMAT: Free-format; command verb can be abbreviated. Arguments spearated
by blanks and specified by position; many have defaults.

NUMERIC COMMAND ARGUMENTS: Free-format arithmetic expressions using hexadecimal or
decimal values and addition, subtraction, multiplication, division, and remainder
operators.

ERROR MESSAGES: 50 different error messages specified by number and English explan-
ation. Provision for User-defined error processing.

SUPERVISOR CALL FACILITY: 31 SVCs provided for address-independent input-output and
utility functions. Inecludes 16 bit arithmetic pseudo-processor with multiply and
divide operators.

1-0 METHCD: True device-independent Input-Qutput over data channels. Channels may
be assigned to any device or file on disk.

UTILTIY PROGRAMS: Automated file copy for single and multiple-drive sysbtems; disk
initializer (FORMAT); System generation programs; File attributes list; more than
15 other programs.

EXTENDED MEMORY SUPPORT: Full support of programs arnd data in any of the MTU-130's
four memory banks (256K byte address space).

RELIABILITY ENHANCEMENTS: Hardware Cyclic Redundancy Check (CRC}:; hardware write-
protect for operating system nucleus and directory; multiple automatic retry with
reset on read/write errors and sesk errors; FORMAT utiltiy tests and bypasses any
defective sectors on disk; all critical directory information is redundantly recor-
ded; utility programs for generating backup files and backup disks; files are
individually write-protectable in software; disks are individually write-protect-
able in hardware.

1-4

DISK RELIABILITY - ITS REALLY UP TO YOU!

Floppy disks provide an excellent low-cost storage media for programs and
c¢ata, with very high reliability. When used with the high-quality MTU-130 Control-
ler and CODOS Software, the incidence of data read-write failures should be virtu-
ally nil, provided a few simple handling precautions are observed. The way floppy
disks are handled and stored will materially affect their lifetime and reliability.
To insure that you receive the reliability and performance the MTU-130 system is
capable of, follow the rules below religiously:

1. Always keep the diskette in its protective envelope. Get in the habit of
removing a disk from the drive directly to the paper envelope. Dust particles look
like a boulder to a recorded bit!

2. Do not touch the exposed recording surface of the disk. Fingerprints are 2
killer, too.

3. Do not bend the disk. It's called a flexible disk, but vou may damage it
if you try to prove it!

4, Do not write on the disk directly with pen or pencil. Use only a soft-tip
marker, and write only in the label area, or ycu may damage the magnetic surface
underneath.

5. Avoid exposure to harsh environments such as extreme heat or cold. Storage
in a locked car on a hot day is a Killer!

6. Keep the diskette away from strong magnetic fields such as speakers and
magnetic note hangers.

7. Cigarette smoke i3 bad for disks as well as people.

If you follow these simple procedures, don't be surprised if you never get a
read/write error. Other disk systems don't often work 1like that, but we're sure

you won't mind dolng without the disk errorst

WHAT KIND OF DISKS SHOULD BE USED?

Any guality soft-sectored 8 inch floppy disk may be used. We recommend Dysan
double density disks for maximum data integrity. However, satisfactory results can
usually be obtained even with diskettes rated only for single density if they are
of good guality, due to the exceptionally high-quality z separator used in the
MTU-130 doubie-density controller, and the automatic error recovery software bullt
into CODOS. The FORMAT Utility will automatically record -he proper double density
timing marks on any soft-sectored disk.

GENERAL INFORMATION ABOUT FLOPPY DISKS

Filoppy disks are normally sold in boxes of 10, and can be purchased from almost any
computer or business supply house. The disk supplied by MTU is called the Distri-
bution disk {(Note: your MTU-130 may have been supplied with two diskettes. The one
labelled CODOS 2.0 is the Distribution disk.) Figure 1-1 illustrates the important
parts of the floppy disk, which are:

1. Manufacturer's permanent label.

2. User's label and MTU Copyright notice. These blank labels are provided in
several colors with the box of disks. Fill ocut the label before affixing it to the

disk, and be sure to include the CODQS Copyright notice on all disks which are to
contain a copy of the system.

3. Index hole. There is a hole in the disk surface and a hole in
While the disk rotates in 1its jacket inside the drive, a beam of 1light shines
through the hole. Onece each revolution the holes line up and the light passes
through, triggering timing ecircuits in the drive. Double-sided disks have their
index hole slightly further off center than single-sided disks, as shown in Figure
2+2, Soft-sector diskettes have only one index hole in the disk itself, but hard
sectored disks (which cannot be used with the MTU-130) have 33.

the jacket.

4. Drive spindle hole. When the disk is in the drive, the drive
spindle into this hole and clamps on
inside its Jjacket.

inserts the
the exposed disk surface, spinning the disk

5. Head slot, This portion of the disk

is exposed for access by the read/-
write head.

6. Write-protect notch. This noteh should be covered with the
label provided in order to write on the disk and should
writing on the disk. WARNING: User-supplied disk drives may
-protect labels and can therefore write on a protected disk.
by MTU will honor write-protected disks.

small gummed
be removed to prevent
not M"recognize" write
Disk drives supplied

Disks should be inserted into the drive in the direction indicated by the
arrow, with the label side towards the movable part of the door.

1-6

FIGURE 1-1: FLOPPY DISK

FIGURE 1~2: DISTINGUISHTNG DOUBLE-SIDED DISKS

-]
©

imt

ONE-SIDED DISKETTE

INDEX

N

©

mt

TWO-SIDED DISKETTE

1-7

CHAPTER 2. .

CODOS SYSTEM CONCEPTS

The CODOS Operating System is a2 powerful computer program for managing the
resources of the MITU-130 computer. 1In particular, it provides a convenient method
for storing and retrieving programs and data on floppy disk storage. The user will
normally interact with CODCS prinecipally through three built-in facilities:

1. The CODOS System Monitor for direct operator control.
3. The CODOS SVC Processor for assembly-language programs.
3. The CCDOS Interface Library (CIL) for BASIC programs.

The System Monitor provides a simple methed for you to interaect directly with
CODOS Dby typing commands on the MTU-130 keyboard {hereafter called the Console).
These Commands are most often used to tiate execution of other programs, examine

the status of various system attributes (such as the names of files present on
floppy disk), or to alter the status of the system [(for example, adding a new

,Aog;am to floppy disk). e CODOS System Monitor is initiated automatically when
the system is "booted" up. A prompting message is issued on the console display.
and the system awails your commands. These commands may be either Bullt
commands, Utilities or User-defined commands. All three types of commands ars
des *r:bed in detaii later.

ALl users of the CCDO3 m i he functions of the System Monitor to

some degree. In additio 2VEr, DrOgrAmmers wi 11 also want programs to interact
with the operating sysuem. For example, assembly language programmers will wish to
be able to display messages on the Conscle and input characters from the keyboard.
In most conventional microcomputer systems, support for this type of activity is
provided in a limited sense by making available Lo the programmer a list of addres-
-ses of syster subroutines which perform the basic input/output functions essential
to programming., The programmer can use these functions by writing a Call (JSR)
the appropriate system subroutine from within the application program. coDoS
previdez a different, thigher-level method of support for user-written assembly
language programs$ called the SUPERVISOR CALL (SVC). Although not normally found on
microcomputers, SVC's are used extensively on the mainframe computers. Instead of
a JSR instruction to a system routirr, the SVC consists of a BRK (%$00) instruction
followed by a byte which identifies tre function desired. There are several advan-
tages to this method, the most important ¢f which is that SVCs are address-indepen-
dent. This means that a program using SVCc will run without modification regard-
less of the loeatlion or version of the operating system. SVCs are discussed in
detail in a later Sections 5, &, and 7.

The MIU-130 BASIC Interpreter provides a limited interface te CODOS at all
times for saving and loading BASIC programs. Use of the CQDOS-BASIC Interface
Library (CIL) gives the BASIC programmer full access to the many features of CODOS
ineluding sequential and random access files, file creation and deletion, and even
provision for executing any CODGS command from a running BASIC program. These
powerful extensions to BASIC are described in the MTU-130 BASIC Reference Manual
and in the CIL manual,

N
1
—

CHANNELS

CODOS provides a capability not normally found on micros called device-inde-
pendent I-0. Device-independence means that a program (or System Monitor command)
can perform input or output to or from a variety of devices or disk files without
modification. For example, a program which normally displays its output on the
system Console device can be run with the output directed instead to a printer,
without any modification whatsoever to the program. Input or ocutput can also be
re-directed to a file on disk. This feature lends great flexibility to programs.
The devieces to be used can be selected by a simple Monitor command, or by the
executing program itself.

The key to device-independence In CODOS is the use of software I-0 Channels.
The System Monitor and programs communicate with the outside world over channels.
At any time, these channels may be associated with a given device or file. The
standard CODOS system has ten channels, numbered 0 through 9.. Each of these chan-
nels may be used to send or receive data, or both. For example, a channel assigned
to a a printer would be used as an output-only channel, but if it was assigred to
the system Console it could both send and receive data.

Certain channels have pre-defined uses, and other channels have been given
suggested standard uses in the interest of uniformity among applications. Thess
channel definitions are given in Table 2-1,

The way in which channels are used will become clearer in follewing sections
which introduce the CODOS Monitor Commands. The section on interfacing to user
programs, Section 5, describes the use of channels from a programmer's point of
view.

Figure 2-1: Conceptual View of CODOS I-O Channels

l. channel
- channel
— channel
~ channel
i~ channel
PROCRAM [~ Shannel
| channel
channel
channel

APPLICATION

O~ YU I N =

CODOS provides "software patch cords" which let you select what device or file is
to be accessed without modifying the program.

TABLE ?-1: STANDARD CHANNELS

Channel 0: Reserved for internal CODCS operation.
Channel 1: Input commands to CODOS Meonitor.
Channel 2: Qutput from CODOS Monitor.
Channel 3: Available. (Input preferable).
Chanrel 4: Available. (Input preferable).

=

Channel 5: Standard input for programs.
Channel 6: Standard output for programs.
Channel 7: Avallable.

Channel 8: Available. (Qutput preferable).
Channel 9: Availa :

NOTES FOR TABLE 2-1:
t. Channel 1 and Channel 2 are normally assigred to the console by default.

The notation "input preferable" or "output preferable" simply means that
convenient to do so, input should be assigned to the lower numbered

rels and output to the higher channels. This i ly @ convention and i:

reaed in any way. ALl channels n be used in either direction or bi-direction-

DEVICES

As we have already seen, CODOS communicates with the outside world over
numbered channels. These channels can be associated with either physical devices
or with files., The devices available on any given system are defined during system
generation Dy using the SYSGENDEVICE Utility, and are identified by a single
letter. Every system has at least two devices: the system Console and the Nul:
. The system Console is the MTU-130 keyboard (for input) and the MTU-13C CRT

d
display {for output), and is given the device name "C".

Tne null device is given the name "N" and is predefined to mean a device that
does nothing. This may seem of dubious merit, but 1is actually very useful. For
example, if you wish %o run a program which normally generates diagnostic messages
on channel 9, you can suppress the diagnostics by merely assigning channel § o the
null device.

Additional devices, such as a printer, may be available on any given system,
and may be named as desired during system generation. In the interest of uniform-
ity Pmong systems, the recommended device names are given in Table 2-2 for selected

cevices.

Remember that all devices have a single letter name. The use of device names
will be illustrated shortly in the section describing Monitor commands.

2-3

TABLE 2-2: DEVICES

Device Name Description

(@]

Console. Input-output terminal device. (Required)
Null device. (Required)

Printer.

Paper tape reader and/or punch.

Terminal {e.g., a Teletype)

Memory .

Xl oy

NOTES FOR TABLE 2-2:

" Other devices may be named as desired during system generation, using a
ngle letter for each. See Chapter 10 and the SYSGENDEVICE Utiltiy program
scr

si
de ibed in Chapter 4.

Programs, text, and data tyoe can be stored and retrieved from floppy
disk for permanent storage using CODOS. A File is a ecollection of related infor-
mation stored as a logical entity on disk. Eaeh file on disk has a unique name,
designated by the creator of the file, The name corsists of from two to twelve
characters, optionally followed by a "." and a one-character file extension. The
first character of the name must be alphabetic. The remaining characters may be
alphabetic, numeric, or the special character " (underline), which is used to
improve readability of composite names and to help search for related files using
"wildeards", as will be discussed in Chapter 4. The single-character file exten-
sion may be alphabetic or numeric. If the optional file extension is omitted, a
default file extension of ".C" is assumed by the system. Thus some examples of
legal file names include:

a2

TANK
MY3RDFILE. A
HIS_STUFF.T
OLD_X_Y DATA.8

The first two file names above will have a default extension of ".oM appended by
the system. The single character file extension is intended to provide the user
with an indication of the kind of file. lthough CODOS does not enforce any
particular convention, Table 2-3 lists the standard file extensions which are
strongly suggested for use, Unlisted extensions may be freely used to cover
special kinds of files not included in the 1list. Note that the extension must be
exactly cne character long if given. Alsc remember that a’l file names must have
at least two characters. This enables CODOS to distinguish between device names
(which always have one character) and file names.

TABLE 2-3: FILE EXTENSIONS

Extension Meaning

A Assembly language source program.

.B BASIC Program {tokenized memory image format)

.C Command (User-defined command programs and System Utility Programs).
D Data.

.E BASIC program (ASCII format, use BASIC ENTER command to load).
.G Graphic data or Display memory image.

.H Hex file {i.e., paper-tape-type format).

J Job file (i.e., a text file of CODOS Monitor commands)

L Listing.

o7 Text.

¥4 Executable code other than a command (e.g., subroutine package).
.2 CODOS reserved system file,

NOTES FOR TABLE 2-3:

1. If the extension iz not given, ".C" will be assumed. While running BASIC,
the default file extension is ".B".

7. Other extensions may be devised by the user as needed.

The extensions given are recommendsd b5ut not required. Any kind of file
can have any kind of extension, so long as it 1s one alphanumeric character.

CODOS SYSTEM MONITOR

The CODOS Monitor is an interactive program which allows the user to enter
commands 4o the system. The Monitor is part of CODOS and is entered automatically
during startup of the system. When the system is "booted™ up, the CODOS memory
image 18 loaded into memory f{rom the disk in drive 0. A special file called
STARTUP.J is then read by the Monitor and all commands on that file are executed.
At the completion of the startup pricedure, a prompting message will be issued
indiecating the versiocn of CODOS which iz active, and the prompt, "CODOS) " will
appear. At this time, a valid command can be entered from the Conscle keyboard.

Every command typed must be terminated by a carriage return, which signals the
Monitor to execute the command. Certain characters may be used for ccrrecting
typing errors or editing the command line during entry; these are summarized in
Table 2-U, In particular note that you can use the BACKSPACE, RU2CUT, cursor left
and curscor right keys to make corrections to your commands. If the line has been
edited, the cursor may be left in the middies of the line when the carriage return
is entered and CODOS will see everything that you see on the displayed command
line. You can also add a comment t¢ your command line if you wish. Any characters
after the ";" character will be ignored by CODOS. To use editing characters in
Table 2-4 which start with CTRL, you must hold down the CTEL key and then depress
the other character indicated.

There are two main types of commands in CODOS: User~defined Commands and
Built-in Commands. Built~in commands are pre-defined by the system. User commands
may be added easily at will by writing an assembly-language program and defining it
as a Command using the built-in SAVE command. 1In the following discussion, only
puilt~in commands will be discussed, so the term "command" will be understood to
mea” "built-in command”.

2-5

In order to improve readability and ease the learning process, CODOS commands
ususally consist of full English words which suggest the function to be performed.
However, any built-in command (not user command) can be abbreviated using the "IV
character. Thus, for example,

ASSIGN

ASSI?

AS!
are all equivalents for the ASSIGN command. It is only necessary %o type enough
characters before the "!" to uniquely identify the command desired. ALY built-in

commands must be spelled using uppercase letters.

Most commands require one or more arguments following the command keyword.
These arguments tell the system what entities the command is to operate on. For
example, the command,

ASSIGN 6 MYFILE.T

has two arguments. The first argument in this ecase is a channel number, and the
second argument is a file name. The command tells CODOS to assoeciate channel A
with the file called MYFILE.T.

Arguments must be separated from the command Keyword and from each other by
one or more BLANKS (not commas!). A few commands use other special delimiters such
as "=z" or M:M in certain places in the command; these will be clearly defined.

Sometimes arguments are optional, in which case the user may elect to specify
the argument or else accept the default argument which will be assumed by the
system. In other cases, the user has a choice of several different kinds of argu-
ments. I you type in more arguments than CODOS expects, the extra arguments are
treated as comments and ignored. Often an arbitrary number of arguments may be
given. In order for this manual to have a uniform method for describing the syntax
of various commands and arguments, the Zollowing notation is adopted:

1. Angle brackets, "{" and "D>", are used to enclose words describing the kind
of entry required.

2. Square brackets, nln ang "]", are used to enclose optional arguments or
symbols, which may be included or omitted as desired.

3. Ellipsis, "...", are used to indicate an arbitrary number of repetitions
of the previous argument(s).

4, Symbols not enclosed in angle brackets are literal symbols which must be
typed exactly as shown.

5. Curly brackets, "{" and "}v, are used to enclose each of several mutually-
exclusive choices, only one of which may be selected.

For example, we could use this meta-language (a meta-language is a language
used te describe another language) to describe several BASIC statements as follows:

2-6

GOTO {line #>
FOR {variabled = <valued TO {value)[STEP <value)]

In the following section, each of the Built-in commands will be defined and
illustrated. Some of the commands require numeric values for arguments. In this
case, either decimal or hexadecimal values may be used. Unless otherwise indi-
cated, all numeric arguments are assumed to be in hexadecimal. To specify a deci-
mal argument, use the prefix ".". If desired, the "$" prefix can be used fto clar-
ify hex values. An arithmetic expression can be used anywhere a numeric value i
called for, except for disk drive numbers. Arithmetic expressions may be formec
using the usual operators, M, MM UEN N/ gnd AN ™" is the remainder
operator. All expressions are evaluated left-to-right without any operator precc—
dence. The value entered may not exceed 65535 decimal or be less than ~32768
gecimal (including =any intermediate point in the computation). The followin,
examples illustrate the evaluaticon of numeric expressions:

100 evaluates as 256 decimal (100 hex).

.100 evaluates as 100 decimal (64 nex).

B+ 10 evaluates as 27 decimal (1B hex). (Blanks are ignored in expressions)
1+.10%3 evaluates as 33 decimal (27 hex).

£71498/.256 evaluates as 20 decimal (1% hex).

HOBC \ 100+7 evaluates as 177 decimal (BD hex).

Arguments which specify memory addresses may also specify a memory bank by

ling 2 :{bank} a5 the end of the argument where <bank) is the digit 0, 1, 2,
" a bank is not specified, memory bank 0 is assumed. Where Uwo arguments
range Of memory addresses, only the first argument should specify a bank
and of the range iz assumed to be in the same bank as the beginning. The
g illustrates the use of bank notation:

£000:1 Specifies address $C000 in bank 1 {the first display memory location).
0:2 3FFF Specifies a range of addresses from $0000 through $3FFF in bank 2
{applicable to commands that use address ranges).

N
1
-3

TABLE 2-4: COMMAND EDITING CHARACTERS

Character Meaning

BACKSPACE Backspace 1 character

- Backspace 1 character (see Note 3).

RUBOUT Backspace 1 character then erase character at new cursor position.
— Forward space 1 character without erasing (see Note 3).

hlank Erase character under curscr then forward space 1 character

CTRL=-X Delete entire line {start line over).

] Comment. Any characters after ";" are ignored.

t Command abbreviation character. 3ee text.

RETURN End-of-command.

HOME Place cursor in upper left screen corner.

INSERT Enter insert mode. Characters will be inserted before the character

the cursor is on, pushing remaining text over to the right. iny
editing character except rubout clears insert mode.

DELETE Delete character under cursor and "close-up" remaing part of line.
SHIFT-HOME Erase screen and place cursor in upper left screen corner.
or Does nob discard line (even though erased).
CTRL-L -
CTRL-3 Temporarily suspend output display (see Note 1).
CTRL-Q Resume suspended output display (see Note 1)

1
CTRL-C Command abort {during display) (see Note 1).
Tnd-of-File (for keyboard eniry only).
Re-display entire present line gtarting at cursor position.
Delete from present curser positicn to end-of-line.
Turn off/on scho of keyboard characters to CRT {sze Note 4).
Recall a2 previously typed line (see note 2).
Jump cursor to last character of existing line.
Jump cursor to first character of existing line.

NOTES FOR TABLE 2-4:

1. CTRL-S and CTRL-C are active only while a command or program is actually
printing text on the console.

2. ©EBach CTRL-B recalls one line, beginning with the most recently entered
line. Recalled lines may then be edited using other keys in this table. The
number of lines which can be recalled depends on the length of the lines; about 8
to 15 average lines are usually retained. As new lines are entered, the oldest
lines are discarded. After the last recallable line has been displayed, the next
CTRL-B will "wrap around" to display the most recent line again. In this way if
you "overshoot" the line you wanted, you can just continue pressing CTRL-B tili It
comes around again. You will find CTRL-B very usefult

3. Cursor-left and cursor-right are normally confined to the limits of the
existing line. You can "escape" from the current line position by using
cursor-up or cusor-down when the cursor is at end-of-iine. However, once you
escape from the present line, you cannot backup to change 1t unless you first
do a CTRL-R.

4. CTRL-E is useful for entering commands when you do not want to “"elutter"
the screen, After CTRL-E, keys pressed do not show up on the screen. Depressing
CTRL-E a second time will re-enable ccho. You can completely eliminate normal
CODOS sereen activity and still enter commands by assigning channel 2 to N (the
nul” device) and using CTRL-E to eliminate keyboard echo.

2-8

TABLE 2-5: BUILT-IN COMMANDS

g

]
0Q

]

Purpose

Display or alter channel assignments for I-0.

Position channel to beginning-of-data.

Boot-up CCDOS (ecold start).

Define breakpoint address for machine language debugging.
Close-cut cperations on disk specified.

Compare two blocks of memory.

Copy memory block.

Set date.

Delete file from disk directory.

Display attributes of disks.

Bxecute a list of Monitor commands on ‘a"batch" jab file.
Designate the default drive.

Digplay contentg of memory.

[L

1

E T U |

‘LAJLA)L‘L)LUUJLA)LIUWLDLA)WLML\)
WO O-~I~~1 AU Imwild Ny =

3-10 Position channel to end-of-file.

3-11 List names of files on disk.

3-12 Fi1l block of memory with a constant.

3-12 Release channel if assigned.

2-13 Load program into memory from disk.

3-14 Display load addresses of loadable file.

3-16 Begin execution of program in memory.

3=17 Search for string of bytes in memory.

3-18 Epable write-protect on disk file.

3-19 Print a message on a device or file.
NEXT 3-19 Resume execution of suspended program in memory.
ONKEY 3-20 Define function key legend and action to be taken.
OPEN 3-21 Open-up operations on a disk.
PROTECT 3=22 Enable hardware write-protect on system memory.
REG 3=23 Display or alter contents of 6502 registers.
HENAME 3-24 Change the name of a file.
RESAVE 3-25 Same as SAVE command except updates existing file.
SAVE 3-26 Save program, command, or memory image on a file.
SET 3-27 Set memory to value(s).
e 3-28 Enable or disable Supervisor Call Processor (SVCs).
TYPE 3-28 Dispiay or print contents of file.
TNLOCK 3-30 Disable write-protect on file.
UNPROTECT 3-30 Disable hardware write-protect on system memory.

NOTES FOR TABLE 2-5:

1. The underlined portion indicates the minimum allowable abbreviation for the
command (using "!").

2. Utility programs, which are very much like built-in commands, are discussed
in Chapter 4.

3 See Chapter 3 and Appendix G for detailed descriptions of the built-in
commands.

2-9

BUILT-IN COMMANDS

See Appendix C for Syntax diagrams for all built-in CODOS commands.

COMMAND NAME: ASSIGN. Al

PURPOSE: To assign an input-output channel to a file or device, or to display ail
current channel assignments.

i— Gevice> } _]

SYNTAX: ASSIGN Efphanne2>{<file> E<brivé§}§..;J
ARGUMENTS:

«Channel> = desired channel number, 0 to 9.

<device> = single character device rname.

<file> = file name desired. .

<drive> = disk drive number, 0 to 3. Defaults to current default drive, usually
G.

EXAMPLES:
ASSIGN

displays the current channel assignments. A typical display might be:

which indicates that channel 1 and 2 are assigned to the Console, and channel © is
agsigned to a file called MYTEXT.T on drive O

ASSIGN 6 C ; OUTPUT TO CONSCLE PLEASE.

assigns channel & to the system conscle device, Everything after the ";" character
15 a comment.

ASSIGN 5 MYTEXT.T

zssigns channel 5 to the disk file called MYTEXT.T on the default drive (usually
drive 0). The system responds to file assignments with either "NEW FILE"™ or "OLD
FILE" depending on whether or not the given file already exists. If you get "NEW
FILE" when you were expecting "OLD FILE"™, it probably means you misspelled the filie
name. You can correct this by merely doing the asaignment over, since assigning a
channel which is already assigned automatically frees the old assignment first.

CAUTION: CHANNELS O, 1 AND 2 ARE USED INTERNALLY BY THE SYSTEM AND SHOULD NOT
BE REASSIGNED UNTIL YQU HAVE A THOROUGH UNDERSTANDING OF THE SYSTEM OPERATION!

ASSIGN 4 C 7T YOURS.A : 1

assigns channel 4 to the Conscle and assigns channel 7 to the file called YOURS.A
on drive 1. If YOURS.A does not exist, 1t wiil be created automatically and will
initially contain nothing. Files which contain nothing disappear automatically
when they are FREEd from their channel assignments.

3-1

NOTES:

1. Assigning a channel to a file always positions the file to beginning of
data, even if the file is already assigned to another channel and is not at begin-
ning of data.

2. More than one channel can be assigned to the same file or device.

3. The CODOS Monitor reads its input from channel 1 and ocutputs to channel 2.
These channels are both normally assigned to the Console. You can, however,
reassign these channels. If you have a sequence of Monitor commands that you
execute often, you can TYPE these commands onto a file, and then ASSIGN channel 1
to the file. CODOS will execute every command on the file and then automatically
reassign the console when End-of-File is encountered. The Conscle is also auto-
matically assigned if an error is detected. This kind of file is called a "Job
file" and has the extension ".J". The file called STARTUP.J is a special job file
which is assigned to channel 1 by the system when CODOS is booted up. Chapter 10
discusses STARTUP.J Jobs in some detail. The "DO" command alse assigns channel 1
to a job file.

COMMAND NAME: BEGINOF. iy
PURPOSE: To position a file associated with a given channel to beginning-of-data.
SYNTAX: BEGINCF (channel) ...
ARCUMENTS:
{channel) = desired channel number, previously assigned to a file.
EXAMPLES:
BEGINOF 5

positions the file presently assigned to channel 5 to beginning of data.

BEG! 789
repositions the files assigned to channels 7, 8, and 9 to beginning of data. You
will recall that the "!" character can be used to abbreviate any built-in command.
NOTES:

1. It is permissible to use the BEGINOF command on a channel which is assigned
to a device instead of a file. In this case, the command is ignored.

COMMAND NAME: BOOT. gei

PURPOSE: To re-boot the CODOS operating sytem from the disk in drive O.
SYNTAX: BOOT
ARGUMENTS: None.
EXAMPLES:
BOOT
will cause CODOS to be reloaded and re-initialized from the disk in drive Q.

NOTES:

1. The BOOT command performs a jump to the ROM bootstrap loader. It does not
clcse any disks or perform any other action before doing so.

COMMAND NAME: BP.
PURPOSE: To set a program breakpoint for drhugging purposes.
SYNTAX: BP [caddr3]

ARGUMENTS: <addr> = address of first byte of instruction at which breakpoint is

desired.
EXAMPLES:
BP 4204
will set a breakpoint at address 4204. Following a GO or NEXT command, whén

program execution reaches 4204, control will be returned to CODOS which <clears tne
breakpoint and then prints the contents of all registers (see REG command descrip-
tion for the feormat of the register printout). Up to 3 breakpoints may be set
simultansously.

BP
c¢clears all breakpoints.
NOTES:

1. BP works by temporarily replacing the op-code at the indicated location wit

a BRK instruction. The original op-code is replaced when the breakpoint is
cleared.

2. Breakpcints may be placed anywhere, even at BRK instructions or Supervisor
Calls (SVCs). They should only be placed at the op-code byte of an instruction.

3. Breakpoints may be set in any memory bank by following the address with a
n." and the bank number.

4, Breapoints should not be set in system memory or in I/0 drivers.
5. The register printout is preceeded by the keyword "BP" to idicate that entry

into CODOS was through a breakpoint.

3-3

COMMAND NAME: CLOSE. ¢!

PURPOSE: To conclude operations on a disk
drive or powering-down the system.

SYNTAX: CLOSE |<@rive> ...]

ARGUMENTS:

in preparation for removing it from the

<drive> = desired disk drive number, 0 to 3. Defaults to drive 0.
EXAMPLES:
CLOSE
closes drive 0. The default for the close command is always drive 0.
CLOSE 0 1
closes drives 0 and 1. The disks may then be removed.

CAUTION: YQU SHQULD ALWAYS CLOSE EVERY DISK BEFORE REMOVING THE DISK FROM THE DRIVE
OR POWERING DOWN.

While CODOS is running, it maintains certain tables and buffers in memory which
may need to be copied back to the disk before the disk is removed. CLOSEing the
disk assures that this cperation is done. This updating is needed only when writ-
ing to disk; not when just reading it. Normally, if you forget to enter the CLOSE
command before removing a disk, it will not matter, since all system programs
update the disk automatically when they terminate, However, if a program which
wrote to a disk file was aborted, terminated abnormally, or did not FREE the chan-
nel assigned to the file, then the file on disk may not be complete unless the disk
is CLOSEd before removing the disk. Therefore it is =a good practice to always
CLOSE a disk before changing disks or powering down. Using reset to interrupt
CODOS during disk operations is not recommended since it may leave the system in an
undefined state. Programmers should note that it is considered good practice for
' programs to FREE channels assigned to files before terminating, so that successful
operation will not depend on the user remembering to CLOSE the disk.

NOTES:

1. It is permissable to close a file which is already closed. In

this case,
no action takes place.

3-4

COMMAND NAME: COMPARE. aaiﬂf

PURPOSE: To determine if two blocks of memory are identical.
SYNTAX: COMPARE <Irom> <td»dest >
ARGUMENTS:

<from> = starting address for first block.

<to> = ending address for first block.

<dest,> = starting address for second block.
EXAMPLE:

COMPARE 2000 2FFF L4000

will compare every byte of the block of memory Irom 32000 to $2FFF to the corre-
sponding bytes in the block from $4000 to $UFFF. If the blocks are identical,
CODOS will display:

SAME .

If the blocks differ, the address and contant of the first byte which differs will
be displayed and the comparison will terminate. For the example command above, a
possible result might be:

2006=30, 4006=90

which indicates that the first 6 bytes of the blocks match, but the seventh bytes
differ as shown.

NOTES:
1. Only the first differing byte is displayed.
2. The values displayed are in hex.

3. The comparison may be between different memory banks. The default bank for
the {dest.}) argument is the same bank as was specified for (fronﬁ.

COMMAND NAME: COPY. cel

PURPOSE: To copy a block of memory to another memory location.
SYNTAX: COPY from><tox<dest.>
ARGUMENTS:

<from> = starting address of block to be copied.
Lto>r = ending address of block to be copied.
Ldest>» = desired starting address of destination of copy.
EXAMPLES:
COPY 100 2FF 2000
copies $0100 through $02FF to $2000 (through $21FF).
COPY 2000 2000+.80 2002

35

copies $2000 through $2050 to $2002 (through $2052).
NOTES:
1. The block may be any size.

2. The destination for the copy can overlap the block being copied. This fact
can be used to advantage to "open up" or "close up" space in memory.

3. Copying can be performed in either direction (higher address to lower
addresa or lower address to higher address).

4. The content of one memory bank may be copied into a different memory bank.
The default bank number for the dest. argument is the same as was specified for
the from argument.

5. CAUTION: Unlike the SET or FILL commands, COPY does not check for reserved

memory violations, nor does it verify the bytes as they are deposited. The reason
for this is explained in the deseription of the SET command.

COMMAND NAME: DATE. {04!

PURPOSE: To set the creation date for any new files generated.
SYNTAX: DATE [<dd-mmm-yy >]
ARGUMENTS:

Ldd-mmm-yy>» = desired date.
"EXAMPLE ;

DATE 08-AUG-80

sets the date field to "08-AUG-80". Any files created thereafter before powering
down the system, re-vooting, or issuing another DATE command, will be dated accord-
ingly. The date field for files is displayed by the DIR Utility.

NOTES:

1. The first § characters (after any leading blanks) are used for the date.
Ho format checking is provided, so you may freely use other forms such as "1/24/81n
if you wish.

2. The date is assigned to a file at its initial creation. It is not alterad
by any changes to the file, including writing, truncating, or renaming it. How-
ever, since COPYF and TYPE (with a file name for a second argument) actually create
a new file, these new files will have the current date, not the original. There-
fore you can effectively change the date on any file by using the date command,
copying the file and deleting the original.

3. The DIR Utiltiy can be used to ascertain the creation date of a file.

4. When CODOS is booted up, it will prompt for the initial date entry by the
user. If the wuser replies with a carriage Return, the default date field,
"RUNDATED*" will be used.

COMMAND NAME: DELETE. UE:E

PURPCSE: To remove a file from the disk,
SUNTAX: DELETE <File>[: «drives] ...
ARGUMENTS:
<file> = file name to be removed.
Ldrive»= disk drive number, 0 to 3. Defaults to the current default drive,

usually 0.

AR RN RN NN RN AR R R RN RN RN RN R SR L RN R RN R E R R R RN AR E RGN RN R AR AR AREL R R AR N R ERNR

CAUTION: USE THE DELETE COMMAND WITH CARE; THERE IS ©NO PROMPT FOR & "VETC®
BEFORE THE FILE IS REMOVED, SO TYPE CAREFULLY! ALL IMPORTANT FILES SHOULD BE
LOCKED IMMEDIATELY AFTER THEIR CREATION TO PREVENT INADVERTANT DELETION BY AN
ERRONEOUS DELETE COMMAND! FOR GENERAL FILE DELETION, YOU SHOULD CONSIDER USING THE
"KILL" UTILITY PROCGRAM DESCRIBED IN SECTION 4 INSTEAD, WHICH REQUIRES VERIFICATION
OF EACH FILE TO BE DELETED,

FR Ty P T T R T s TP I I I Y
EXAMPLES:

DELETE MYDATA
deletes the file MYDATA.C from the default disk (usually drive 0).

DELETE PROG 1A:1 Y3 HIS STUFF.T
deletes three files, one from drive 1 and two from drive 0.

NOTES:

1. It is recomeended that the XILL Utility be used in iieu of the DELETE command
in an interactive environment. The DELETE command is more convenient to use in a
bateh Job, however, and does not use the memory area reserved for utilities

($BLOO-BDFF) to operate.

2. Once a file is deleted, it cannof be recovered.

3. Backup copies of important files should always be maintained on any disk
system.
COMMAND NAME: DISK. nit

PURPOSE: To display the number of files, remaining space, and volume serial number
on all open disk drives.

SYNTAX: DISK
ARGUMENTS: none.
EXAMPLE ;

DISK

3-7

will display the number of files, volume serial number, and free space on all c.en
drives. A typical diaplay might be:

11 FILES:0 (VSN=2001), 890K FREE
108 FILES:1 (VSN=0003), 72K FREE

which indicates that drives 0 and 1 are open, with 11 files on drive 0 and 108
files on drive 1. There is about 890K free (1K = 1024 bytes; therefore about
911,360 bytes remairn available) on drive 0, and the serial number specified when
that diskette was last formatted is 2001. The number of "K" free is a decimal
number.

NOTES:

1. Disk space is allocated and displayed in blocks of 2K bytes on single-sided
drives and 4X bytes on double-sided drives.

COMMAND NAME: DO.

PURPOSE: Tc execute a list of CODOS Monitor commands stored on a "Job" file.
SYNTAX: DO <File> :drive
ARGUMENTS:

<file> = desired text file of commands to be executed by CODOS.
<drive> = optional disk drive number, O to 3, which defaults to the current
defauit drive, normally drive O.

EXAMPLES:
DO MAILINGLIST.J

will cause CODOS to read and execute every line of the file MAILINGLIST.J on drive
0 as a Monitor command. When end-of-file is reached, CODOS will resume reading
input from the Console.

NOTES:

If an error is detected by CODGS while executing a command from the "job" file,
an errcr message will be issued in the ususal manner showing the offending command
from the file, and CODOS will accept input from the Console. The remainder of the
commands on the job file will be ignored.

2. Normally the Editor is used to create a new Job file (see the MTU Secreen Editor

ranual for details). Suppose you used "EDIT ODDJOB.J:1" to create the following
file:

GET ODDSUBS ;LOAD MY ORIGINAL ODD SUBROUTINES

SET 2245=4C 68 2B ; MAKE PATCH FOR STRANGE STUFF

ASSIGN 7 OLDDATA.D ;DATA FILE NEEDED DURING PROCESSING
ASSIGN § P ;PRINTER

ODDERPROG ;EXECUTE MAIN PROGRAM

FREE 7 ;DONT NEED DATA FILE ANYMORE

3-8

It is considered good practice to placse comments on your command lines, sc you will
remember what the job does when you later look at the file. After exiting from the
Editor,

DO ODDJOB.J:1

will cause CODOS to execute the six commands stored on ODDJOB. This is called
"batch" execution of a "Job" file.

3. The DO command produces the same effect as assigning channel 1 to the "job"
file.

4., DO commands cannot Dbe nested. You may place a DO command in a command file,
and control will transfer to the indicated file. However, when End-of-File is
reached on the new file, control will revert to the Console and will not resume
with the next command after the DO on the first file.

COMMAND NAME: DRIVE. JR!

PURPCSE: To designate the default disk drive number to be used when files are
referenced without a drive number being exp’icitly given.

SYNTAX: DRIVE drive>
ARGUMENTS:
<drive> = desired drive number, 0 to 3.

EXAMPLE:

DRIVE 1
sets the default drive to drive 1.
NOTES:

1. Tne default drive is 0 wnen the system is booted up or Reset.

2. The DRIVE command only affects the drive for file name references. 1o does
not affect the default crive for OPEN, CLOSE, FILES, etc.

3. The drive number selected using the DRIVE command is referred to as the
"default drive".

COMMAND NAME: DUMP. 0!

PURPOSE: To display the contents of a block of memory in nexadecimal and as ASCIT
characters.

SYNTAX: DUMP from> |<to>flcdevice |7
{- J(channei}ig

ARGUMENTS:

3-9

{from) = desired starting address.
(to) = desired ending address {ses note 1 below). Default is from +15.
{device) : desired device on which to display the output., Defaults to the
console.
(channel) = desired channel on which <o display the output.
EXAMPLES:
DUMP 1000
displays 16 bytes of memory starting at $1000.
DUMP 1000 1014

displays memory starting at $1000 and will include memory through $1061A. The
resulting display might look similar to:

¢ 1 2 3 4 5 & 7 8 9 4 B C 9 E F
7000 34 77 D7 4B 20 00 56 78 4F 4B 20 46 45 4C 4C 41 4w.H..Vx OK.FELLA
1010 55 67 09 42 59 45 00 063 03 03 20 00 00 00 10 20 Ug.BYE..

Of course, the actual values displayed will depend on the contents of memory. The
sixteen rightmost characters of each line are the ASCII characters for the line,
with each non-displayable character converted to ".", including blanks.

DUMP 1000 1000+.500 P

dumps 500 (decimal) bytes starting at $1000. The dispiay will be output to the the
printer.

NOTES:

1. A complete iine is always cisplayed even if the to address is not an even
multiple of 16 bytes. Sufficient complete lines will be displayed to ensurs that
the to address is included in the display.

2. 4s with any command, CTRL-S can be used to temporarily suspend the conzole
dispiay and CTRL-Q to restart it. CTRL-C can be used to abort the DUMP.

3. The righthand portion of each line of the dump displays "." in place of
ach ron-printable cnaracter, including blanks. Characters considered printable
2 ary of the 96 printable ASCII characters except blank, provided bit 7 is 0.

4, If desired, the number of bytes displayed per line can be altered to accom-
modate narrower or wider devices. See Appendix E.

5. Each memory location dumped is actually read twice so be careful when dump-

ing 1/0 register contents that may be affected by the very act of reading.

COMMAND NAME: ENDCF. =,

PURPOSE: To position a file associated with a given channel to End-of-File.
SYNTAX: ENDOF <Ehannel> ...
ARGUMENTS:

~

<Channel> = desired channel to position.

3-10

EXAMPLES:
ENDOF 5
positions the file zssigned to channel 5 to End-of-File.
END! 6 4
positions the files assigned to channel 6 and channel 4 to End-of-File,
NOTES:

1. If the channel specified is assigred to a device and not a file, the com-
mand is ignored.

2. The ENDOF command can be used (with caution) to concatenate files or extend
files. See the TYPE command for details.

3. Don't forget that ASSIGN always re-positicns a file to beginning of data;

therefore assigning another channel to the file after using ENDOF will negate the
effect of the ENDOF command.

COMMAND NAMZ: FILES. FIit

PURPOSE: To display the name of every file on a disk.
SYNTAX: FILES [Kdrive>)..
ARGUMENTS:

Lirive> = selected disk drive number, 0 to 3. Default is always drive 0.

displays the names of all the files on drive 0, five names per line.

displays the names of all the files on drive 1.
NOTES:

1. The DIR utility program can be used to display more information about
selected files. See Chapter 4.

2. As with any command, CTRL-S can be used to temporarily suspend the Consocle
display and CTRL/Q to restart it. CTRL-C can be used to abort the command.

3. Built-in Monitor commands are not listed by the FILES command, because tney
are a part of the operating system, CODOS.Z.

COMMAND NAME: FILL.

PURPOSE: To fill a bliock of memory with & constant.

o <:har-acter->")
SYNTAX: FILL <from> <to> L’:}} <alue>
'<Ceharacter>!

ARGUMENT 3:

Lfrom>» = desired starting address to be filled.
<toY = desired ending address for fill operation.
Lyalue> = numeric constant to be deposited into each byte of the memory block.
Coharacter> = single ASCII character to be deposited into each byte of the
memory block.
EXAMPLES:
FILL 1200 12FF O

fills every byte between $1200 and $12FF inclusive with $00.
FILL CO0O0O:1 FBFF 73
£ills the entire MTU-130 display memory with $73 bytes (displays vertical bars).
FILL 1000 1000+.100 "¢
fills $1000 though $1064 with $22 (an ASCII ").
NOTES:
1. As each byte is deposited in memory, the result 1s verified by the system.
fn attempt Lo £ill ROM, reserved-memory, defective memory, or non-existent memory

wiil abort the command at the point where the error occurred.

2. The TILL command may be used to fill memory locations reserved for COBOS
if an UNPROTECT command has been issued. Indiscriminant FILLing can lead to system
crashes.

itner single or double guote marks may be used to delimit the character,
sut must be the same on both sides.

COMMAND NAME: FREE. FI

PURPOSS: To disassoeiate an Input-OQutput channel from a device or file.
SINTAX: FREE <thannel> ...
ARGUMENTS. ..

<channel>> = desired channel number to free, 0 to 9.

EXAMPLES:

FREE 6
frees channel 6 from its prior assignment.
FREE § 4
frees both channel 8 and channel 4.
NOTES:
1. It is permissable to free an unassigned channel.

2. FREE is the inverse operation of ASSIGN.

COMMAND NaME: GET. G[
PURPOSE: To load a memory image from a disk file.
SINTAX: GET filed [irived|ls Hest> .. |
ARGUMENTS:
<Filé> = desired file name to be loaded into memory. See note 1 below.
<drive> = drive number, O to 3. Defaults to the default drive, normally O.
d

<dest,> = destination starting address for load to be used in lieu of the frem
address which was specified when the file was saved.

EXAMPLES:

GET MYPROG

alled MYPROG

MY be loaded at the
the time the

i : L tne SEVE command.
Counter will be set to the entry poin idress wt was saved with the file.

GET OLD_PRDG.X:7=700 =1B00

file OLD PROC.X Trom drive 1 into memory. The first block {(which is

was SAVEZ on the file) will be loaded starting at address $0700,
" what loac address was ospecified when the file was creabed. The
(if 1t exists) will be loaded starting at address $1BGO. Any addi-
T bilonks (shouid they exist) will be loaded at the addresses specified during
the creation of the file.

Wid

W

\ file may be loaded into a different memory bank from which it was saved.

2. The file to be loaded must be a loadable format file such as is generated
by the SAVE command. An attempt to load a text file or other type file will result
in an error. The format of a loadable file is described in Appendix B.

I The file may consist of several non-contigucus blocks of memory, all of
which will be loaded. See the SAVE command description for details.

Lk, If fewer (dest> arguments are supplied than there are blocks in the file

to be loaded, the remaining blocks are loaded starting at the addresses given when
they were saved.

3-13

5. If more <dest.> arguments are supplied than there are bloeks in the filz to
be loaded, the extra argumenis are ignored.

6. GET always sets the Program Counter, P, to the value of the Entry point
which was specified when the file was saved.

7. Specifying (dest.) does not affect the vaiue used for the Entry point. The
Program Counter will still be set to the value specified as the Entry point when
the file was saved.

8. Naturally, the GET command with (dest.} specified does not relccate any
machine language code; it merely loads the memory image at a different loeation.
Therefore most programs will not run properly if loaded at a different address than
was intended.

v 3. The GETLOC command can be used to ascertain the values of the (entry},
{from), and {to) arguments which were used when the file was saved.

10. The GET command will not load a file into areas of memory reserved for
0ODOS unless an UNPROTECT command has been given. In addition, it will not load
directly into memory below address $0200, unless the system has been UNPROTECTed.
Tnis encourages the good programming practice of reserving page 0 for scratch
storage and page 1 for the stack. Be aware however that locations $0200-306FF are
used for system parameter storage and should not be overwritten by a GET command
uniess it is specifically desired to change these parameters.

COMMAND NAME: GETLOC. (ETL!

PURPOSE: To display the Entry point, Starting load address, and Final load address
for a file previously generated by the SAVE command .

SYNTAX: GETLOC <file> [<trive;
ARGUMENTS:
LPile> = desired file name.
Jdrivey= disk drive number, O to 3. Defaults to the current default drive,
usually O.
EXAMPLES:
GETLOC WMT

-

will display the memory block and entry point used by the program VMT.C on drive 0.
A typical display might be:

VMT.C=5014 5000 587C

Wnich indicates that VMT loads into addresses $5000 through 587C inclusive, and
execution starts at $5014.

GETLOC SEGS.X : 1

will display the load attributes of SEGS.X on drive 1. Assuming that SEGS.X was
saved with three distinct blocks of memory (see SAVE command), the display might
typicalily be:

SEGS.X=2000 2000 342D
1300 13DD
178G 1748

which indicates that issuing a GET SEGS.X:1 command (or executing SEGS.X:1) would
result in memory images being loaded into $2000 through $342D, $1300 through $13DD,

and $1780 through $17A8. If SEGS.X:1 is executed, the program will be entered at
$2000.

NCTES:

1. If the file specified was not generated by the SAVE command or other pro-
gram generating loadable-format files, an error will result.

2 When using GETLOC to determine memory usage by a program, remember that
programs .oaded may use additional scratch RAM other than that actually loaded.

COMMAND NAME: GO.

PURPOSE: To begin execution of a macaine-language program in memory.
SYNTAX: GO Eifroﬁ)ﬂ
ARGUMENTS:

<from>» = desired starting address. Defaults to current value of the Program
counter (as displayed by the REG command).

EXAMPLES:

GO

begins execution at the current address of P. The current value of P can be dis-
played using the REG command.,

GO 1200
pegins execution of a machine language program at $1200.
GO 101A:3

executes a program starting at address $1014 in bank 3 (assuming expansion memory
is present in bank 3).

NOTES:

1. Upon entry to the program, the registers will be set as displayed (or
defined) by the REG command, except the stack will be discarded (that is, $=FF).

2. The program is actually entered by a JSR instruction, so that a correspon-
ding BTS will return control to the system. I a program re-snters CODOS in this
sanner, a subzequent REG command will display the status of all registers except P
st the time of the RTS. This is useful for debugging subroutines since ik
command can De used to enter the subroutine, and the routine will return o
¢ completion with the conterts of the registers displayable. An RTS wWill v
contrci to CODOS even from another memory bank other than bank 0.

3. The ifference between the NEXT command and the GO command is that the
NoXT command preserves ihe stack and enters the program via a jump (thus effective-
iy coutinuing execution), whereas the GO command discards any stack (sets stack
pointer to FF) and enters the program via a J3R. EXCEPTION: A GO command issued
using SVC number 13 (see Section 6; will not disecard the stack.

4. I the Lifromi argument specifies a memory bank other than O, the progranm
is entered with the program bank and the data bank set to the specified bank
number.

3-16

COMMAND NAME: HUNT. !

PURPOSE: To search a block of memory for a string of bytes.

v ghar>, . "
SYNTAX: HUNT (fromd&c> |<valuel

' Lehar>...?
ARGUMENTS:

<frofy= starting address for the search.
<to>= final address for the search.
<har>= an ASCII character.

<Palug>:z a numeric value, O Lo $FF. in a string of values, one (and only one)
value can be replaced by the wildeard, "?", which maiches any single byte.

EXAMPLES:

HUNT 2000 2400 'CODOS*

will search memory from $2000 though $2400 inciusive and list the address of all
oceurrances of the ASCLII character string, "CODOSY. If a match is made for al
oytes, the starting address of the matching string is displayed, and the sesarch
resumes at the next byte.

HUE 200:2 200+.100 4C
will search from $0200 to $0264 in memory bank 2 for the btvte $UC.

HUNT 2320 4FFF 20 ? 03
will search from $2320 to $4FFF for a $20 folilowed by any byte followed by $03.
Tnis might be useful for searcning for a JSR (320} opccde to a subroutine which you
wnow 1s somewhere in page 3 but you don't know exactly where.

JUNT 3600 3300 OD 'NOW IS THE Times

searches for a $0D byte (a carriage return) followed by the ASCII string "NOW IS
THE TIMZ", between 3000 and 3300.

HUNT 20C Lu8Q 'GO* 7 'NEW!
sear Trom 200 to 2283 for TGO" followed by :

y single byte followed Dby "NEW",
cald maten suen strings as "GOINEW", "GO NEW®, "GO,NEW" and "GOTNEW".

i HONT reportus all occurrences of the target byte-string in the region. A

CNTRL-3 can be used to temporarily suspend the display and CNTRL-C can be used to
abort Lhe command.

2. Only one "2" wildcard can be used, and ii cannot be the first byte of the
target byte string (that would be meaningless).

3. A "?" inside an ASCII string enclosed in quotes is not a wildcard and will
only match a "?" in memory.

4. The largest byte-string permitted is 11 bytes.

B When searching for a character string, if ihe region being searched in-
cludes the CODOS line-input buffer, you will always get a match at that location,
because you are matching the string you typed in. However, if you DUMP the speci-
fied address, you will not see the desired string, because typing the DUMP command
altered the content of the line-input buffer.

COMMAND NAME: LOCK. L)

PURPOSE: To enable the software write-protect for a file.

SYNTAX: LOCK <file> [l <driver] ...

ARGUMENTS:

<file> = desired file name.

<drived> = disk drive desired. Defaults te the current default drive, usually
drive 0.
SXAMPLES:

LOCX INVENTORY.T

sets the write-protect for the file called (NVENTORY.T on drive 0. This wiil not
affect other Files on the disk.

Notes:

1. The LOCK command is used to protect files against INADVERTENT destruection.

1t is not intended to provide any kind of file security. For floppy disk systems,
the most appropriate method of securing information is physical security of the
disk.

2 The LGCK command will protect files from DELETE, SAVE, and RENAME com-
mands, and from SVCs and languages wnich write or truncate the file. It will
protect Tfiles from the FORMAT utility program, nor from other software using the
disk controller directly.

%. A backup disk should always be maintained for all impertant files on any
floppy disk systen.

3-18

COMMAND NAME: MSG. Al ,l

PURPOSE: To print a message over a speciiied channel,

SYNTAX - Single line form: MSG Lhar» Lext> CR
Multi-line form: MSG < chnaf>d ACR

<text> CR ...

<text>ACR
ARGUMENTS:
<han> = channel nupber from O to 9
<ext> = any printabie A3SCIT text except the "A" (caret) character.
Ch = ASCIL Carri seturn conirol character (not the ars "CR")

EXAMPLES:

MSG z Starting assembly.
will priat YStarting assembly.¥
is usually assigned to the Conso
job file to Keep the operator inform

n over channel 2, which
1, say, in a bateh

[
x
°
"
L Tl
5
M
e
5
53
®©
5
o
I
o
I
4
cr
o U

MSG 674
This represents tine results of applyin
a smoothing function to the data. A

will print the two line message above as two lines on whatever is currently
.igned to channel 6. This might be wuseful for ide
program that does not identify it itself for some reason

fa3eS

ntiflying the output frem a

NCTES:

1. Be sure tc remember the final "AM' character in the multi-line form or
will never terminate.

NAME: NEXT. A

on after z treak or interrupt

o menory.

SYNTAX: NEXT[<from> |

ARGUMENTS:

starting address. Defaults to current value of the Program C
38 displayed by the REG command.

Wwill bepin execution at the address curreatly stored in the P register.
WEXT 223B

will pegin execution at $223B.

NOTES:

1. The values of all registers upon artry to the program will eorrespond to
the values shown or set by the REG command. This Includes the stack pointer.

2. The program is actually entered via a JMP instruction, so that an RTS
instruction will return to the address on the top of the stack, not to the CODOS
monitor.

3. The program will ce
was in effect the last time

entered with the same program and data bank setting as
CODOS was entered.

4, The differencs between GO and NEXT is that CO enters the program wWith a JSR
aller discarcing ay stack Le., 3ets S=FF whereas NEXT enters via a JMP with
the stack preserveuA The oprimary advantage of the NEXT command is it enables a
user to continue execution after a breakpoint nas been encountered.

3
\
I

COMMAND NAME: ONKEY. L

(SR

PURPOSE: Define a function key legend anc assoclated substitution string.
-~ !
SYNTAX: ONKEY |<key #> 3<_egend>z_<“"mg>f;-cr'm'F“Ei
i

ARGUMENTS:

key #> = a function key number between 1 and 8 inclusive.

<jegend) = a string of 8 or fewer characters enclosed in quotes which 1s o be
displayed in the specified legend box.

<strin§> = a string of 31 or fewer characters in gquotes which is to be entered
into the input line buffer when the specified function key Is
pressed.

Lterm>~ = the nhmerlc value of the te“mlnanlo character to be entered

buffer follo 1f omitted, a

¢hiaracter is

EXAMPLES:

ONKEY @ "PAYRCLLY MFAYROLL LASTWEEK.D THISWEEX.D"

legend PAYROLL in the box ab the bottom of the screen

3 Foliowing this, any time the operator presses the 3 key, ihe
D THISWEEK.D will be entered into the input 1ine su.fer
Was typec in by the operator. Since no termination was specified,
ue of $0D (ASCII carriage return) is entered next which causes the
‘souted immediately as a CODOS command. The string is also displayed
{echoed) on the console dispiay.

ONKEY 8 * ASM' 'ASM DEVELOPMENT:1 L=' @

igh approximately
tered (because of the two leading vlanks). When the operator presses &,
string "“ASM DEVELOPMENT:1 L=" will be entered ints the input buffer and
displayed on the conscle. Since a termination of 3§60 (ASCII NUL) was specified,
the cursor will be positioned just beyond the last "=", The operator would presun-
ably type in a file name and a carriage return to execute the complete ccmmand or
use editing keys to aliter the command.

will display the legend ASM in the righ:most functien Key box

ONKEY 1 'PRINTER' 'ASSIGN 6 P' 8D

will display the legend PFRINTER in the leftmost function Key box. Pressing the ©1
ey would execute the CODOS command "ASSIGN & pv. Since it 7 of the termination
character is set, the substitution string will not be shown on the conscle output

whizh essentially "hides" what the £ key does 1n terms of CODUS commands.
ONKEY 3

will clear the legend for function key 3.
ONKEY

will clear all of the legends and substitution strings.

1. If the <legend.»is longer than 8 characters, the excess is ignored.
2. If the ostringl>is longer than 31 characters, the excess is ignored.

3. ZEither single guotes or doudle auotes may enclose the legend and substibtu-
tion string but must be the same on bothn sides,

L. The substituticn string may contain only one
desired, you can

- 1 I i
prepare a Job file with the wmultipie liges and then specify a DO
command as the sub £

stitution string.

COMMAND NAME: QPEN. @

POSE: To decliare a disi ready for access by the system.
SYNTAX: OPEN [<drive>] ...
ARGUMENTS:

<§riv§> = disk drive number Lo be opened, O to 3. Sefaults to drive 0.
EXAMPLECL:

OPEN

opens Lne disk in drive O for operations.
G

opens drive 1 for subsequent operations.

3-21

NOTES:

1. Every disk must be OPENed prior to performing any command or operatior on
it (except FORMAT). The disk must be in the drive and the door closed befcore
typing OPEN. Failure to open a disk before accessing it will result in an error
message; if drive O 1s not open, an error number will be displayed without a
message, since the system gets the error messages from a disk file ({consult Appen-
dix A).

2. The system requires that an OPEN disk be present in drive 0 at all times
with a valid copy of the cperating system on it. In addition, any user programs or
data may also be on the disk in drive 0. Most Monitor commancs are overlays which
are loaded into memory from disk as needed; therefore an open disk in drive QO is
essential. Generally, the disk in drive O should only be closed when exchanging it
for another disk or powering down thne system. Certain Utility programs such as the
single-drive copy utility open and close drive 0 automatically.

3, Unlike many other systems, it is ne® necessary to open or close Ilndividual
files when using CODOS. It is only necessary to OPEN each disk as it is inserted,
and CLOSE each disk befeore it is removed from the drive, or before powering down.

LR See the description of the CLOSE command [or more details on OPEN/CLOSE
considerations.

5. The disk in drive 0 is automatically OPENed by the system when it is
"hooted! up.

6. CPENing a disk which i3 already OPEN is permissible.

COMMAND NAME: PROTECT. P,

PURPOSE: To enable the memory-protect hardware on the upper 8k block of memory on
the disk controller board {acdresses 3E000-3FFFF in bank 0) and enable the
reserved-memory checking for SET and FILL commands.

SYNTAX: PROTECT

ARGUMENTS: rnone.

EXAMPLE:

PA0TECT

i, The CODOS system normally "comes up" in protected mode,

2. In protected mocde, the system will not allow any SET or FILL command into
the portion of page O reserved for CODOS, nor into the stack nor into addresses
$E0C0-$FFFF on the disk controller.

3. The effects of PROTECT are nullified by an UNPROTECT command.

4. PROTECT and UNPROTECT do not affect the disk or the effect of LOCK and
UNLOCK commands.

3-22

COMMAND NAME: BEG. R/

PURPQOSE: To display or alter the contents of the user's 6502 registers.
F{cbaracte@'ri
{value)

L!(character)uj

SYNTAX: REG |(reg. desig.) |=]
d
ARGUMENTS ;

(reg. §esig.> = register name to be altered, A, X, ¥, F, S, or P.
(Value) = desired numeric value or numeric expression.
<character§ = desired 4SCII charaater.
EXAMPLES:
REG
will display the contents of the registers.
REG A=0
sets the A register to $00.
REG X .65 ¥Y="B" 4 = 10
sets the X register to $41, the Y register to $42, and the A register to $10.
NOTES:
The REG command without arguments displays the user's registers In the

f
format illustrated below:

v....Current Program Counter (P}

. e .aCurrent Program Bank
. + «esss.Current Data Bank
" « + ssse...Contents of memory at P through P+2 in hex

. P .

P=1B1F:0/0 (201417) A=2A X=05 Y=00 [=32 S=FD

. . B . .

.

Contents of accumulator (4.
Contents of X regeeesenees : . .
Contents of ¥ rege.cceeu.. i &

Contents of Flags(F).uyeua.

Current Stack pointer(S)....

3-23

The individual bits in the Flags (F) register display are the same as the
nardware Processor Status Word, as described below:

R I I R R

SN.V. .B.D.I.Z.0C.

ST St S s aaelE aTa%. 5
% P 5 i
. P easreCarry

. verrra e Zero result

: : : : : srresessassssoInterrupt disable
: : : : :........,.. Decimal mode

: : : :.....................Break command

: : :.............,Undefined

. ceesssiesssceranssccnnsssssnaOverflonw

S SR S TR .Negative result

2. Bither single or double quotes may be used to enclose the character when
setting a register %o an ASCII character, but the same type of quote must be used
on poth sides of the character.

3. The "=" between the register designator and the value is optional and in no
way affects the meaning of the command.

COMMAND NAME: RENAME. AFV!

PURPOSE: To change the name of an existing file.

)

R AN P h | 2y
SYNTAX: RENAME (f1le) rive) | <newf1;e>

2
ARGUMENTS:

{f1i€) = the existing file name.

ﬁrive} = disk drive number for the existing file. Defaults to the current
default drive, usualily C.

@ewfile§ = desired new file name.
EXAMPLES:

RENAME JUNK GARBAGE

changes the name of [{ile JUNK.C on drive 0 to GARBAGE.C.

3-24

RENAME MYNEWTEXT.T :1 MYOLDTSKT

changes MINEWTEKT.T on drive 7 to MYOLUTEXT.C. Since no extension was glven for
the new file name, ".C" was assumed.

COMMAND NAME: RESAVE. JES!

PURPOSE: To replace an existing file with a program or memery image(s).

SYNTAX: RESAVE {file) :{drive)| | ={entry) (from

(= {dest)__! {to; ...
ARGUMENTS:

(file} = cesired fiie name.

(drive) = gesired disk drive, 0 to 3. Defaults to the default drive, usually 0.

{entry) = entry point desired. Defaults tc from

{from) = starting address for the block of memory.

(dest.) = address at which the bloek is
GET commands. Defaults to {from).

to/ = final address of the memory block.

to be loaded into memory on subsequent

RESAVE DOIT 200 2E3
saves the contents of memory locations $0200 through $02E# inclusive on the file
named DOIT, replacing whatever was in file DOIT previcusly, If the new nemnory
image is larger than the existing contents of the file, the file size will be
increased automatically. If the new memory image is smaller, the Tile size will ve
reduced. Please refer to the description of SAVE below Tor further explanation.

NOTES:

iy ine s
except that the specified fiie already exists,
command would give an error under that condition.

commanc
Tne SAVE

. The “5SAVE command performs
<l

2.

anda SAVE.

the specified file toes not exist, there is no difference between RESAVE

3. The RESAVEd file will be rewritten in the same blocks on the disk as th
il Thig ecan be useful if it is desired to pateh certain position sensitive
es such as CODOS.Z itself.

4, You may resave a file which is larger than the fil

@ Deing replaced without
narm. CODOS will alliocate additional space as needed.

COMMAND NAME: SAVE. 9Ot

PURPOSE: To save one or more blocks of memory on a file.

SINTAX: SAVE <filed [rcrive>] Fgntrib]<from> Fcdest 5] <t&> ...
ARGUMENTS:

<file> = desired file name.

<drive> = desired disk drive, O to 3. Defaults to the default drive, usually 0.

<entry>» = entry point desired. Defaults to <from> 3

<from> = starting address for the block of memory.

<dest.> = address at which the block is to be loaded into memory on subsequent
GET commands. Defaults to Lfrom>.

<bo>» = final address of the memory block.

EXAMPLES:
SAVE DOIT 200 2DF

saves the contents of memory locations $0200 though $02DF inclusive on a file
called DOIT.C on drive O (by default). Since no optional arguments were specified,
the entry point will be saved en the file as $0200, the same as the starting
address of the bleck. DOIT is now a User-Command, so subsequently typing DOIT will
cause the block to be loaded from disk into memory at $02060, and execution begurn at
$0200.

SAVE RALPH_PROG.C:1 = 2424 2000 20FE 340 3A0

saves a file called RALPH_PROG.C on drive 1. The file contains two memory blocks,
the first from $2000 to $20FE, and the second from $0340 to $03A0. The entry point
is $2424. Subseguentiy Lyping a WALPH_PROG:1 command will cause the two blocks of
memcry to be re-loaded from disk, and program execution degun at $2u2k.

SAVE SUBPKG.Y 40022000 400+.100

saves 100 decimal bytes of memory on a file ocalled SUBPKG.X, starting at $0400.
Sirce a dest. address was specified, a subsequent GET SUBPKG.X command will cause
the memory block to be loaded into address $2000 and up instead of the $0400
address at wiieh it was saved.

saves the entire current screen image of the MTU~130 display on a file.

NOTES:

1. The existence of the "=" in the command indicates the existence of one of

the optional arguments Leniry>or gdestl . Pay careful attention to the position
the argunents.

2. When using <dest}», note that no relocation of any possible address
references is made; the memory block is still exactly as saved. Therefore speci-

fying <dest > is not generally a satisfactory method of relocating machine language
programs.

3-26

=]

3. Tne <?n$ri> pcint 7oes not nave L0 reside inside any of the saved blocks.

. The number of blocks saved on a single {1l
of (from» Cto> arguments you can fit on the command

[/

limited only by

5. Bank notaticn may pe used on the from)> and <@est;> arguments. Tne
<pntri> must not specify a bank number, bui will be understood te zlways reside in
the same bank as the first block SAVEAd.

6. The value FFFF or .65535 may not be used as the <to> argument.

COMMAND NAME: SET. § £

PURPCSE: To set tne value of memory iocations.

. M<Bharacters ... M

SYNTAX: i value> [,
{ ‘<character> ...' |
ARGUMENTS:
{fromy>» = address at which to deposit the first value.

<§alué> = numeric value Lo be deposibed.
<character>» = an ASCII character to be deposited.

EXAMPLES:
SET 2000= 1B

sets address $2000 to $1B.
SET 2006 "aBC®

sets $2006 to $41 (ASCII "a"), $2007 to $42 ([ASCIL "3%), and 32008 to $43

SET 1200 80-.10 " % BQ-.20 '

51203 to $20 (ASCII Dblank), $1204 to $5C, and
characcer).

I double-gucte

is optlonai and nas no effect ¢n the ueaning of tne command.

ch byte is depesit

a
the bvte pacxk from memory resul

message iz i3sued and the command

in memeory, it is verified by CODOS. If reading

d i i
= in a bad compare Lo the value deposited, an error
aborted

e
<
n

3. Addressses are checked for validity before depositing each value. If an
zttempt is made to set Reserved memory, an error message will be issued, unless an
UNPROTECT command was issued previously.

i, Ocecasionally it may be desired to set values into several adjacent I-0
ports in a singie command. The BSET command generally can't do this since the
verify may fail. One way to solve this is to SET the desired values elsewhere in
nmemory and use the COPY command to actually install the values into the port
addresses, since COPY has no validation or range checking.

3=-27

COMMAND NAME: svC. SV

PURPOSE: To enable or disable SVCs (upon subsequent entry to user program,.
SYNTAX: SVC /of‘f%
ARGUMENTS:
<bfﬁ> = any non-blank argument. Defaults to no argument.

TXAMPLES:

SVC
will cause SVCs to be enabled upon subsequent eniry into any user program.

SVC OFF
will cause SVCs to be disabled upon subseguent entry into any user program.
NOTES:

1. The status of the SVC enable determines what action takes place when a BRK
{$00) instruction is encountered in a user program., If disabled, control returns
to the cperating system Monitor and the register contents are displayed. 1f ena-

bled, control is passed to the SVC processor, as discussed in Chapter 5.

2. Dumping memory iocation $EE will not necesszarily show the current SVC
status since it is not set until a user program is entered.

3% The SVC command does pot load the SVC processor into memory. If the
STARTUP.J file has not loaded the SVC processor automatically, then it must be
loaded by using a GET SVCPROC.Z command. Using SVCs without having the SVC
processor loaded results in unpredictable behavior.

COMMAND NAME: TYPE. T!

PURPOSE: To display, print, or create a text file.

Zdevice> | | <dest.device> B
SYNTAX: TYPE <filed :(hrived ; é<ﬁest,fi;§> r<drive>
<enannel> L \ <dest.channel> Vo

-

ARGUMENTS:

Ldevice>= single character source device name.

&iley = desired file name to type.

Ldrived= desired disk drive, 0 to 3. Defaults to the current default drive,
ususalliy 0.

<channel> = desired pre-assigned source channel number, 0 to 9.

Ldest.device’> = desired output device name. Defaults to Console ("C").

<est.file> = desired file to receive output from TYPE.

<dest.channel>»= desired pre-assigned channel to recieve output from TYPE.

EXAMPLES:

3-28

TYPE MYSOURCE.A

will display the file MYSOURCE.A on drive 0 on the Console
TYPE MYPROG.L P

will type the centents of the file MYPROG.L on the printer.
TYPE C NEW.T

will) aceept ingue fron the consol

e keyboara and put it on a file
This is one way to create a text file

.

[¢]

alled NEW.T.

ja
—r

input from the file or device assigned (o channel 5 and cutput
ile on drive 1.

e
.
ot
]

]

i Tne first argument specifies the source for the TYPE command; the second
argument 1s optional and specifies the destination.

2. The second argument defaults to tne Conscle {"C") device.

3. When the scurce for the TYPE command is the conscole keyboard, CNTRL-7
used to enter End-cf-File and therefore terminate the TYPE command.

4. If a file name is given for either argument, the file will be automatically
positioned to Beginning-cf-Data before typing starts. However, if a nnel is
used for the argument, no positioning takes place. This fact can be used to advan-
tage to copy parts of & Jile or concatenate [1les. For example:

ASSIGN ©

oo 6 X%

TYPE C

o

be used o append llnes onto the existing fiie OLDTEXY
Howevar,

.T from the Console.

TiPk C CLDTEXT.T

would cverwrite and replace the existing file, so be carefull

5. Tne TYPE command always frees the channels used wnen it terminates, unless
vhe command was aborted.
. if the TYPE command is aborted wusing CNTRL-C, the channels it uses wili
remain Assigned. You may use the ASSIGN command to check this.

o

7. The TYPE command assumes that the file to be typed will comsist of ASCII
characters. If you attempt to TYPE an executable file, you will see garbage
gisplayed.

COMMAND NAME: UNLOCK. !

¢

PURPOSE: To disable the software write-protect for a file.
SYNTAX: UNLOCK <file>[Di<drived) ...
ARGUMENTS:
<file> = desired file name.
Ldrive>= desired gisk drive, 0 to 3. Defaults to the current default drive,
usually O.
EXAMPLES:
UNLOCK VALUABLES
removes the write-protect from the file called VALUABLES.C on drive 0.
UNLOCK GOODIES.T:1 GOGDIES.A:1
removes the write-protect from both files specified.
NOTES:

1. It is permissable to UNLOCK a file which is not LOCKed.

COMMAND NAME: UNPROTECT. yp!

PURPOSE: To disable the hardware write-protect on the top 8X of RAM on the disk
controller board (addresses $E000-$FFFF in bank C) and disable the system reserved-
nmemory checking for SET and FILL commands.

SYNTAX: UNPROTECT

ARGUMENTS: none.

', Once UNPROTECTED, the SET and FILL commands will be able to freely over-
write normally-reserved areas of memory including the part of page 0 used by CODOS,
page 1, and the System KAM on the disk controller. Naturally, casual abuse of this
Pfacility is Llikely to cause strange and invariably unpleasant results.

2. Tne GET command can load into System RAM or page 0 or 1 after an UNPROTECT

command. It is the user's responsibility to ensure that blocks loaded into these
areas will not conflict with CODOS memory usage {see Appendix F).

3-30

CHAPTER 4.

COROS UTILITY PROGRAMS

Utility Programs differ very 1little from built-in commands from the user's
viewpoint. Utilities are invoked from the Monitor by merely typing the name of the
desired Utility followed by any required or optional arguments, just as is the case
for the built-in commands. However, the Utilities have the folilowing distinctions:

1. The names of the Utility programs appear in the disk directory Just like
any user command, and can be deleted or renamed if desired.

2. The Utility programs execute in the System Utility area of RAM from $BH00-
BFFF. Some wutilities also use a large nuffer for copying disk files ({called the
"Large Transient buffer"). The standard locaticn of this buffer is AJ00-3
bank 0, but it may be altered. lease refer to Section 10 and Appendix B for the

iccation of the system parameter that governs the buffer location and size.

3. Utility names canncot be abbreviated using ™i".

The stancard Utilities that would be used by nearly all CODOS users are listed
in Table 4-1, and are described in the {cllowing section. Many additional util-
ities with more specialized funetions are listed in a separate utilities manual,
Several other utility programs lor system generation are deseribed in section 10,

TABLE 4-1. UTILITY PROGRAMS

Name Function
DIR Dispiay file attributes for selected filelz), using "wildcard" name

matching.

CCPYF Copy file(s) on a multiple-drive system.
COPYF1DRIVE Copy file{(s) on a single-drive system.
FORMAT Initialize a new or existing disk; test and bypass any defective

sectors; ocupy the operating system if desired.

KILL Deietes files on disk using "wildcard" name-maitching.

UTILITY NAME: DIR.

PURPOSE: To display the attributes of selected files.
SYNTAX:; DIR cpattern ...

ARGUMENTS:

<patterrl> = desired file name, optionally using "wildcard" characters as de-
scribed below:

¥ matches any string of characters terminated by (but not 1nc1udin§) 1
? matches any single character.

- (dash) matcnes any string of characters terminated by and including " "
(underline). Ses note 2 below.

The default pattern is "¥*.?" on the current default drive, ususally O.
EXAMPLES:

DIR
will list the attributes of all the files on drive 0. A typical display might be:

CODOS. 24 24-JAN-B1 $0018C0

0L
AIMEXT.Z ;0 L 24-JAN-81 $0001BF
SVCPROC.Z :0 L 24-JAN-87 $00018F
COPYF.C :0 L 24-JAN-81 $000082
MYTEXT.T :0 - ®UNDATED* $0010CD
Tne first coiumn is the file name and extension. he ":0" .ndicates the drive.
The next column either contains "=-" or “L". The "L" indicates that the file is

locked. The next column Is the creation date for the file. The final column is
the file size in hexadecimal bytes.

DIR *.T
will display the names of all files on drive 0 with a ".T" extension.
DIR *.7:7
wiil display all files on drive 1.
DIR INVENTORY.? ORDERS.?
will display all files on drive O named INVENTORY or ORDERS with any extension.
DIR DATA -VS Z.D

would display the attributes of file names such as DATA“;_VS_Z.D or DATA_Y_VS_Z.D,
out not DATA_X_VS_Y.D

DIR OLD¥®.A

will display the attributes of any file starting with "OLD"™ with an ".A" extension.

NOTES:

1. In order to display the attributes of files on
pattern argument must be given. For example, typing "DIR
attempt to execute the program called DIR on drive 1. If the DIR Utility exists on
drive 1, then it wiil be executed, and since nc arguments are given, it will
display the attributes of all files on drive 0, whiech is probably not what was
intended. To display all files on drive 1, the correct command is "DIR #.7:7n,

drives other than 0, :he
1" will cause CODOD to

2. A pattern of the form: ¥JAN.? will not mateh any file names. This is
because the "*" is defined as matching any string terminated by a "." and that is
clearly not possible within the confines of legal fiie names. .t you wish te adopt
a naming convention that uses a suffix to specify a class and a prefix to disting-
ulsh within the class (as the above pattern implies), use an " " (underline)
character in the file name to separate the prefix from the suffix and then use the
now to represent any prefix. For

- (minus) character in the pattern specification
example, -JAN.? will find SALES_JAN.D and PROJECT_QAN.D‘

3. DIR will not correectly show the length of a file which has just been writ-
ten until the channel assigned to it has been FREEd or the disk CLOSEG.

if you see
a file with a length of 0, check to see il it is still assigned.

5-3

UTILITY NAME: COPYF.

PURPOSE: To copy files on a multi-drive system.

SPECIAL HARDWARE: At least 2 disk drives are required by COPYF. See COPYFIDRIVE if
you have only 1 disk drive.

SYNTAX: COPYF <patterm> E(drive)] [@ewdrive)]

or
= < =1
copyr {riled f<drived] B’newfile,‘) ¢ @ewdrive}Tﬂ
ARGUMENTS :
Cpatterj>= file name with "wildcard(s)". "Wildcards" recognized are:
* matches any string terminated by (but not inecluding) ".".

? matches any single character except ".™,
- matches any siring terminated by (and including) " ". See note T

The default pattern is "%#.?" yhich matches all files.
<File> = desired file name to copy.

<drivegr=z disk drive where file is to be found. Defaults to the current default
drive, ususally 0.

<newfilg> = desired new file name desired. Defaults to (file).

<newdrives = desired destination disk drive, 0 to 3. Defaults as follows:
1f deive =... tnen default newdrive =...
0 1
1 0
2 3
3 2
EXAMPLES:
COPYF

pies 511 files on the disk in drive 0 to drive 1, except files which already
exist on drive 1. The system will display the names of the files, for example:

CGo0S.Z: 7 ALREADY EXISTS.
SYSERRMSG.Z:7 ALREADY EXISTS.
MYDATA.D COPIED.

G0 INVENTORY.C COPIED.
FORMAT.C COPIED.

4D_DRIVER:1 ALREADY EXISTS.

indicating that three of the files were not copied because they already existed on
drive 1, and that the remaining tnree files were copied.

L4

COPYF TURKEY

copies the file TURKEY.C from drive § onto drive 1. The new file on drive 1 w~ill
also be named TURKEY.C. ©No other files will be copied.

COPYF *.G:1

copies all files ending in ".G" on drive 1 to drive 0, unless they already exist on
drive 0.

COPYF NEW®.? 2

copies all riles whieh have names starting with "NEW" on drive 0 to drive 2, uniess
they already exist on drive 2.

COPYF DATA.D:7
copies file DATA.D from drive 1 to drive 0.

COPYF CLONE NEWCLONE: O

duplicates file CLONE on drive 0, with a name change. After the command, both
CLONE and NZWCLONE will be on drive 0. Excapt for the name and creation date, they
will otherwise be identical.

COPYF STUFF.T:3 OLDSTUFF.T:1

copies file STUFF.T from drive 3 to drive 1 and changes the file name on the drive
1 file to OLDSTUFF.T.

COPYF 227?7.C

copies all fiies with exactly four characters in the name and a ".C" extension from
drive 0 to drive 1, except files which already exist on drive 1

NOTES:

1. If an attempt is made to copy a specific file pame {that is, without any
wiidcards), and that file already exists on the destination disk, then an error
messaze wiil be given (unless the system "re-save OK" fiag has been sebt as de-
scribed in Appendix E). However, 1f a pattern is given (that is, with one or more
wildeards), n file names which matceh but already exist on the destination disk
are ply ignored, and the Utility execution continues. This allows users to
easily copy all files which do not already exist on the destimation disk by simply
typing COPYEF without arguments.

vi

3. You may not use wildcards wnen changing the file name during a COPYF.

L. COZYF should not be used to copy the operating system, CODOS.Z. Copying
the operating system is accomplished using the FORMAT program.

5. COPYF uses the Large Transient Buffer during the copy operation (see
Appendix F for location).

6. Files created by COPYF are always unlocked, regardless of whether the
riginal file was locked or not.

e

7. Please see note 2 in the DIR command deseription for additional information
about wildeards.

4-5

UTILTIY NAME: COPYF1DRIVE.

PURPOSE: To copy files onto another disk in a one-drive system.
SYNTAX: COPYFI1DRIVE

ARGUMENTS: none.

EXAMPLE:

COPYF1DIRVE

executes the single-drive file copier. The Utility is completely interactive, and
will prompt:

PUT SOURCE DISK IN.
FILE {OR CR IF DONE)?=

Type in the name of the file to be copied. The Utility will prompt:

PUT DEST. DISK IN,
CR WHEN READY.?%=

Hemove the source disk from the drive and insert the desired disk to receive the
cepy of the file. This disk must have been previously formatted. When the new
disk is in and the docr is closed, depress carriage Return. Usually at this point
the system will prompt:

PUT SOURCE DISK IN.

FILE (OR CR IF DONE)?=
which Indicates your file has been copied and you may now copy another file, If
you do not want to copy another file, put whichever disk you want to use (oid or
new) into the drive and nit carriage Return. ¥f you wish to continue copying other
files, insert the desired source disk and type the file name.

Occasionally some files will be too long for the COPYFIDRIVE Utiltiy to copy in
a singie pass. In this case, the Utility will prompt:

when you depress Carriage return, it will copy the remainder of the file. Several
passes may be needed [or files much larger than the Large Transient Buffer.

NOTES:

1. COPYFIDRIVE shouid never be executed from a job file.

2. Increasing the size of the Large Transient Buffer, as described in Section
10, will inerease the file size which can be copied in a single pass. This is
strongly recommended since the standard system uses a relatively small buffer suit-
able for dual-drive systems.

3. "Wildecards" are not available for COPYF1DRIVE.

4. Do not use COPYFIDRIVE tc attempt to copy the operating system onto a disk.
Oniy the FORMAT Utility can correctly copy the operating system.

5. Files created by COPYF1DRIVE are always UNLOCKed initially.

i

2y

UTILITY NAME: FORMAT. ' 02

PURPCSE: To erase and re-format a disx for CODUS use, test and bypass defrctive
disk sectors, and copy the operating system files to the disk.

SYNTAX: FORMAT 'S | = (interleave)| T = (skew)

ARGUMENTS:
(interleave) = optional sector-to-sector interleave factor. See note 2 below.
If "S" is specified without a numeric argument, S=3 is assumed. Defaults to Sz2 1if

ommitted completely.

(skew) = optional track-to-track skew factor, 3See note ~ below. Defaults to

T=$C.
EXAMPLE:
FORMAT
initiates the Iinteractive FORMAT Utility. Tre Ytility 11t display different
prompts, depending on whether you have a single-drive or multiple-drive system. On
2 Multiple Drive system, the program prompts:

WARNING: FORMAT WILL IRREVOCABLY
ERASE EVERYTHING ON DISK IN DRIVE 1.
ARE YOU READY (Y¥/Nj?=

iny reply starting with "Y" or a carriage return will be interpreted as a "YES®
reply. Anything else is a "NO" reply and aborts thne command. Before replying make
sure the disk you want to format is in drive 1. 4 "YES" reply will cause FORMAT to
erase all tracks on the disk, write new timing information on the tracks, and test
she directory track for bad sectors, All this takes about a half a minute (aboub
one minute for double-sided disks). It will then promg

3o
]

WANT 7O TEST FOR BAD SECTORS {¥/N)%=

test every sector on the disk, type "YES". Testing & single-sided
inutes to compiete. Normally vou will probably not want to
you have doubis about the integrity of the diskette. The
random data into every byte of every sector on
hack and comparing to the data written. If any errors
ve sypassed automatically during file allocation by the
message will indicate what track and sector was bad and

ccurs in the directory or system overlay portion of the
clisk, with the message "DISK UNUSABLE", since directory sectors
cannoct be ¢ i Note 3.

Trhe next psrompt issued by FORMAT is:
DISK VOLUME SERIAL NO. (VSN)?:=

FﬁEéT any nexadecimal number desired between 0 and FFFF. This Volume Serial Number

is itten in the directory area of the disk and is intended to uniguely identify
each disk. Therefore you will normally want to give every disk a different number.
You may also want to write the VSN on the label portion of the disk using a soft
magic marker for visual identification purposes. The DISK command displays the
VSN. You may assign any VSN you wish. The next prompting message 1s:

4=y

WANT TO COPY DRIVE O SYSTEM (Y/N)?=

If you want to have a copy of the operating system on the newly-formatted disk,
reply "YESY. Normally you will want to copy the system onto all new disks. wn
multiple drive systems, it 1is only necessary for the disk in drive 0 to have an
operating system image on the disk. Trnerefore if you only plan to use the new disk
in another drive, you can reply "NOY. The advantage of this is that you gain about
20K of additional free space on the disk. Normally this smail saving in space does
not Justify the added potential inconvenience of being unable to "boot up" or run
the disk in drive 0.

When the copy operation is complete, the Utility issues the message:
NEW DISK 135 NOW OPEN.

sl FORMAT Ucility is completed., To

€ ascertain which files were copied by the
ORMAT program, type:

e

FILES 1

You may want to use the COPYF Utiltiy to copy additional files. TIn particular, you
will probably want to copy the COPYF Utility and the FORMAT Utility, and any device
drivers (such as PRINTDRIVER.Z) needed by the STARTUP.J file. These are not copied
oy FORMAT. At tnis point, the disk in drive 71 can be used to "boot-up" the opera-

ting system at any future time by inserting 2. in drive 0 and executing the boot
loader,

For singie-drive systems, a similar dialog will be initiated by FORMAT, except
that you will be prompted o change disks for copying the system. Be sure to
remember Lo remove the old diskette and insert the new one {the M"DEST." diskette)
when prompted to do so, before replying "YES" to "ARE YOU READY?". You will not be
glven the opticn of not copying the system, since every disk must have it in a
crie-Crive system. Use COPYFIDRIVE to copy the additional files desired upon
completion of the Format utiiity.

NOTES:

1. FORMAT uses the lLarge Transient Buffer in memory. See the Memory Map,
Appendix F, for 1its default location. The buffer location can be altered as
gascribed ia Chapter 0.

2. ne optilonai "S" option on tne FORMAT command alters the "skew" of the

Be2TLors

My
Lhe meay

k from the standard alternate-sector skew to a

purpcse of this option is discussed in Appendix D.
should norma.iy be ommitted. The "T" option
sectors

specified value.

This argument
specifies the number of physical
which will intervene Detween logically adjacent sectors when stepping from
one tracd to the next. Normally this argument should not be specified.

3. When FOAMAT discovers a defective sector during testing, it is normal for it
Lo report the same defective sector twice and pessibly three times.

4. If defective sectors are reported anywhere on track 0, the disk cannot be
used to bsot-up the system. It still can be used as a data-disk (no system
present) on a multi-drive system however.

4-8

UTILITY NAME: KILL.

PURPOSE: To selectively delete files matching a given name with "wildeard" ch'.race
ter matching.

SYNTAX: XILL <pattern>

ARGUMENTS:

(pattern) = desired file name, optionally containing the following "wildcard"
characters:

* matches any string of characters terminated by {(but nct including) ".®
? matches any single character.

- (dash) matches any string of characters terminated by and including “_f
(underline). See note 1 below.

EXAMPLE:
KILL MYFILE

executes the KILL Utility to delete file MYFILE.C on drive 0. If the file is not
found, no action takes place; otherwise, the KILL Utility displays:

ENTER CR OR Y TO DELETE, N TO KEEP FILE:
MYFILE.C:0 7=

This prompt affords you an opportunity to make sure you gct the file you really
wanted. If you wish to delete the file, enter either a carriage return or a word
starting with Y followed by a carriage return. Any other response will not delete
the file.

KILL *.G =1

will display the names of all the file names with ".G" extensions on drive 1 and
let you approve or veto the deletion for each file individually.

KILL ?2770LD*.?

will display the names of all the files with YOLD" for the fourth through sixth
letters of the name, and let you kill or keep each file.

NOTES:
1. A LOCKed file cannot be KILLed.

2. Once a file is KilLlLed, it cannot be recovered. Therefore exercise caution
and be certain you have the right file and drive.

3. Piease see note 2 in the DIR command deseription for additional information
about wildcards.

4-9

CHAPTER 5.

INTERFACTNG USER-WRITTEN ASSEMBLY-LANGUAGE PROGRAMS TO CODOS

INTRODUCTION

This section introduces methods by which user-written assembly-language
programs may communicate with the outside world through the CODOS operating systerm,
and take advantage of various utility functions provided by the system. Using the
functions described here can greatly reduce program development time and effort.

Most operating asystems provide a degree of support for assembly-language
programming by making available the addresses of certain system subroutines which
the user can call to perform I-C or other functions. For example, to output =
character to the console, you might put the ASCII character into the A register and
call the driver subroutine for the console display device. CODOS doesz not use this
method, but instead provides a more powerful toel called the Supervisor Call
Instruction (SVC). The SVC concept i3 not new: SVCs are found in varinsus forme on
many large mainframe computers.

The following discussion assumes a knowledge of 6502 assembly language pro-
gramming on the part of the reader.

HOW SVC'S WORK

The CODCS implementation of the Supervisor Call capability consists of a BRX
instruction ($00) followed by a one-byte numeric code which tells the system what
function is required. The code numbers are listed in Table 5-1, Effectively, the
SVC is a lot like a JSR (Call Subroutine) instruction, except that it is two bytes
long instead of three, and the second byte is not an address, but a code which
tells what pre-defined system subroutine 1s to be called. Individual SVCs are
explained in detail in Chapter 6.

Why are SVC's better than a straightforward JSR? There are several reasons:

1. 3VCs are address-independent. This iz by far the most important advantage
of SVCs. It means that future system upgrades which may alter the addresses of
actual system routines will not affect the SVC numbera, and therefore will not
adversely affect programs using SVCs. It alsc means that, for example, a program
on an AIM-65 computer with CODOS a%t $8000 can be transported to an MTU-130 system
and run without modification. If subroutine calls were used instead, it would be
necessary to pateh all the J3Rs to the system routines before execution.

2. 3VCs use less memory. Two bytes are cheaper than three.

3. SVCs preserve the values in registers. All registers are restored to
their condition upon entry to the SVC when returning to tne calling program, except
when returning values to the calling program. This saves the programmer a lot of
unnecessary saving and restoring registers.

4, 3VC's are easier to debug. If an error is detected by the system while
processing an SVC, the program will abort and CODOS will display the exact address
of the offending Supervisor Call, the values of all the registers at the time of
the SVC, and an error message explaining the diffieulty. Illegal or unimplemented
3YCs are also trapped in the same manner.

TABLE 5-1: CODOS SVC NUMBERS

SVYC# Description Pass Regs. Returns Regs.
9] Show registers, Enter CODOS Monitor. - -
1 Enter CODOS Monitor. - "
2 OQutput inline message (See text) -
3 Input byte from channel. X A, F
4 Qutput byte te channel. A,X -
5 Input line from channel. X,U5 A,Y,F
6 Output line to channel. X,Y,U6 -
7 Qutput string to channel. X,Y,Ub -
8 Decode ASCII hex to value. Y, U5 A,Y,F,U0
9 Decode ASCII decimal to value, Y,Us 4,Y,F,00
10 Encode value to ASCII hex. Y,U0,06 ¥
11 Encode value to ASCII decimal. Y,U0,U6 ¥
12 Query buffer address & passed argument. - Us,U6,Y
13 Execute a CODOS Monitor command. us (See Chapter 6)
14 Query channel assignment, X AR
15 Read record from channel. XU, u2 F,Ut1,U2
16 Write record to channel. X,U1,02 F
17 Position file to beginning. X -
18 Position file to end-of-file. X -
19 Position file. X, U7 u7

20 Query file position. X
21 Assign channel to file or device. X,A,03 A,F
22 Free Channel. X
23 Truncate file at present position. X

24 Define interrupt vector. uo -

25 Define error-recovery vector. uo -

26 Restore default error recovery. - -

27 Enter 16-bit Pseudo-processor. S F

28 Query CODOS Version. - A,X,Y

29 Query file status. Y,us A,Y,U3,F
30 Query date. Y, U6 Y,U6

INITIALIZATION AND PARAMETER PASSING

In order to use 3VCs, the user program must first enable the Supervisor by
setting the SVC Enable flag, SVCENB (address $00EE), to 4850 (bit 7 must be set to
1). 1If SVCs are not enabled, any BRK instruction will simply return to the Monitor
with a display of the location of the BRK and register contents. Note that the
SVCENB flag must be set to $80 by the user program, or by the SVC command. Setting
$EE to $80 from the Monitor using the SET command will not work. The recommended
procedure is to have the program set the SVC enable flag.

Usually, some type of argument needs to be passed to the Supervisor and/or
returned to the user program from the Supervisor., The method for passing arguments

5=2

is defined for each SVC individually, and may be done in three possible ways:
1. Arguments may be passed or returned in 6502 registers.

2. Arguments may be passed in one or more "Pgeudo-Registers" in page zero.

3. Argumenis may be passed "in-line", immediately following the SVC.

Before proceeding further, an example program will illustrate SVC usage.

Example Program ': Diaplaying a text message.

The first SVC we shall examine in an example is SVC 2, which outputs a message
over a channel. This is a very unusual SVC in that the argument is passed in-line.
However, it is so frequently needed in programming that it deserves
attention.

PROBLEM: Write a program to display the message “HELLO THERE.™ on the console

Prala €.

SOLUTION:
SVCENB B $EE ; SVC ENABLE FLAG LOCATION
s $2000 ; PROGRAM ORICIN
GREET LDA #$30
STA SVCENB ENABLE 3VCS
BRK $SVC...
BYTE 2 5.+ #2 = OUTPUT INLINE MESSAGE...
BYTE 2 ;.. -OVER CHARNNEL 2...
.BYTE T'HELLO THERE.®
BYTE 0O ;O TERMINATES MESSAGE TEXT
RTS ;BETURN TO MONITOR OR CALLING PROGRAM
JEND
EXPLANATION:

The program begins by enabling 9VCs (note: once enabled, SVCs remain enabled
until disabled by writing $00 into SVCENS; it is advisable to disable 3VCs when notb
aeeded). The BRK instruction together with the first .BYTE 2 pseudo-instruction
comprise the SVC, and Table 5-1 tells us that an SVC 2 is used to display an inline
message. The second .BYTE 2 tells the System what channel te output the message
on. Channel 2 was selected for our example Dbecause it is assigned te the console
display by default. Of course, it could be re-assigned to any device or file.
Following the channel is the text of the message, which can consist of up to 254
bytes and is terminated by a $00. The $00 alsc is the last argument of iniine
eode. The System will output the messag: over channel 2 and then return control to
tne instrucktion following the $00 byte; in this case, the RTS which terminates the
Program.

Remember that SVCs do not alter any registers except to return values to the
calling program; since SVC 2 does not need to return values, no reglsters are
alterad. This is a big benefit, since it means that you can put inline messages
anywhere you please in your program for debugging purposes without having to worry
about aide effects to the registers. Note that SVC 2 does not output any carriage
return automatically; 1f you want to output control charggfers, you may include
them explicitly in the message, as illustrated below.

(W
1
)

Example Program 2: Display message on a new line.

PROBLEM: Repeat Problem 1, above, but start the message on a new line.

SOLUTION:
SVCENB = $EE
;
¥ $2000
GREET LDA #$60
STA SVCENB ;ENABLE SVCS
BRK
BYTE 2 1SVC 2 = INLINE MESSAGE
.BYTE 2 i...0ON CHANNEL 2
.BYTE 13 ; 13=$0D=ASCIT CARRIAGE RETURN
JBYTE 'HELLO THERE,'
.BYTE 0 : TERMINATOR
TS
EXPLANATION:

The only change to this program from Example Program 1 is the additicn of the
".BYTE 13" at the start of the message, which oproduces a carriage return. Any
control characters desired can be embedded in the message in this menner, except
ASCII RUL {because NUL = $00, the message terminator.).

There are three commen pregramming errors which you should avoid when using
SVC 2 to generate messages:

1. Forgetting to enable SVC's {in which case the program will simply return
to the Monitor with a display of the registers when the first BRK instruction is
encountered).

2. Forgetting the CHANNEL argument (which usually results in an error message
of "ILLEGAL CHANNEL NUMBER" or "CHANNEL NEEDED IS UNASSIGNED").

3. Forgetting the zero-byte termirnator for the message, (which often results
in your program going into "hyperspace™ after displaying the message).

PASSING ARGUMENTS TO THE SVC PROCESSOR IN 6502 REGISTERS

The example programs above passed their arguments to the Supervisor in-line. &
much more common method of parameter-passing is the use of the 6502 registers. The
following example illustrates register parameter passing.

Example Program 3: Character Input-Output.

PROBLEM: Write a program which reads a stream of bytes from channel 5 until a "."
character is encountered, or end-of-file is reached, Display a message indicating
which of these two events occurred. Assume channel 5 has been previously assigned
to a valid file or input device.

SOLUTION:
SVCENB E: $EE

:
STRMIN LDA #$80

STA SVCENB
NEXTCH LDX #5 ;CHAKNEL 5 FOR INPUT STREAM

BRK
BYTE 3 ;SYC #3 = INPUT CHARACTER FROM CHAN (X)
BCS EOFENC :BRANCH IF END-OF-~FILE ENCOUNTERED

#

CMP . JELSE EXAMINE CHARACTER INPUT
BNE NEXTCH :IF NOT ".", READ MORE
BRK
.BYTE 2 ;ELSE DISPLAY INLINE MESSAGE
.BYTE 2 -...ON CHANNEL 2
LBYTE 13, '"." ENCOUNTERED.',0 ;GIVE MESSAGE
RTS

EOFENC BRK
.BYTE 2 ;SVC 2= INLINE MESSAGR
.BYTE 2 ;...ON CHANNEL 2
.BYTE 13, 'E-0-F ENCOUNTERED.',0 ;GIVE MESSAGE
RTS

EXPLANATION:

This program illustrates a number of aspects of SVC usage. The line labelled
NEXTCH is used to load the channel number desired into X. The Supervisor expects
tn £ind the channel number in register X when the SVC is processed, as is dehtalled
in Chapter 6. SVC 3 returns the character read in the A register, and sets the
carry Fflag only if End-of-File was encountered. End-of-File is an important
concept. The End-of-File flag (the carry flag) is set by the SVC processor only if
no more characters can be read from the selected channel. If the input channel is
the console keyboard, this means that CNTRL-Z was entered (the CNTRL-Z character is
323 returned in A). If channel 5 was asaigned instead to a file, it simply means
that the previous character was the las% character in the file. The programmer
should always check for End-of-File v%en doing any kind of input operation, so that
programs are device-independent. No error will occur if you attempt to read beyond
end-of-file; the result in A is Jjust not meaningful. It iz the Programmer's
responsibility toe test the carry on every input operation and take appropriate
action Lif it is set.

In our example, once we have ascertained that E-0-F was not encountered, the
character received from channel 5 is checked to see if it 1is a ".". If not,
another character is read. 0Once one of the two terminal cond’ticns is met, an SVC

2 is used to issue a message to the consols (channel 2) indicating which event
occurred.

5-5

FIGURE 5-2 PSEUDO-REGISTERS

Actual
Address Pseudo-Register Name
1 ; !
$00B0 ! REGISTER UCQ !
! !
1 . H
$00B2 1 REGISTER U1 !
! 1
! ; 1
$00BY ! REGISTER U2 !
! . !
! a i
$00B6 ! REGISTER U3 t
! . !
! : !
$00B8 ! REGISTER U4]
! . '
! . !
$00BA ! REGISTER US t {Inbut Buffer Pointer)
! ; H
1 K 1
$00BC 1 REGISTER U6 ! (Output Buffer Pointer)
! . t
! p ; ! (File
$00BE !
f

REGISTER U7 t Position)
.]

NOTES FOR FIGURE 5-2:

1. All values are passed in the usual 6502 fashion with low byte first.

2. The memory locations shown are not used by the system for any purpose
whatsoever except processing user SVCs. This memory can therefore be freely used

by the user.

3. The SVC enable flag is at address $EE.

PASSING ARGUMENTS IN CODOS PSEUDO-REGISTERS <

Sometimes it is necessary to pass addresses or other 16-bit information to the
SVC processor. The 8-bit A, X, and Y registers of the 6507 are inadequate for this
purpose, so a set of eight Pseudo Registers (hereafter called P-registers or simply
P-regs) are provided in zero-page, as shown in figure 5-2 . P-regs U0 through U6
are each 16 bits wide; U7 is 24 bits wide, and is used for file positioning, as we
shall see later. Note that if SVCs are not enabled, these P~regs are not used for
any purpose whatsoever by the system, and may be freely used as ordiﬁgry program
memory by application programs. Values to be passed to the SVC processor are
installed in these P-registers in the usual manner for memory. The 3VC processor

5-6

expects to find certain addresses or values in specific P-registers, depending on
the SVC. For example, most I-0 functions (except single character I-0) use U5 to
nold a pointer to an input buffer and U6 to hold a pointer to an output buffer.
Fach SVC description tells what P-registers are used, if any. Certain S2SVCs return
information to the application pregram in P-regs. For example, SVC 12 (40C) does
not pass any P-regs to the SVC processor, but the system returns US and Ub to the
application. The addresses returned are pointers to the system input and output
line buffers, respectively.

Example Program 4: Line-Oriented I-0.

Most programs need to deal with input and output of strings or lines of
characters. Several SVCs are provided for support. Applications programs will
make heavy use of the 6502 (Indirect),Y addressing mode in these appliecabions. 1In
general, P-register U5 (for input) or U6 (for output) must be initialized to point
to the start of a buffer containing the current line of intersest. The Y register
is used to index the particular character of interest within the line. Normally,
the System Input and Cubput buffers are the most convenient to use, since an SVC 12
will automatically setup the proper addresses in US and U5, but the oprogrammer may
select any location for the buffers. The System buffersz are sufficiently large Tor
Iines of up to 192 characters. The following problem illustrates linc-processing.

PROBLEM: Write a program to copy lines c¢f input text from channel 5 to channel 6

until an End-of-File is encountered. fssume Channel 5 and 6 have been given
appropriate assignmerts

SDLUTION:

Pl O

SVCENB = $ER

Us = $BA ;P-REG U5

U = $8C ;P=REG U6

NCHARS o4 ;TEMP SAVE FOR COUNT OF CHARACTERS

COPYSE LDA #$80
STA SVCENB ;ENABLE SVCS

BRK

LBYTE 12 ;SVC 12 = QUERRY SYS. BUFFER ADDRESSES
NEXT LDX #5 ;CHANNEL 5 FOR INPUT

BRK

.BYTE 5 ;SVC #5 = INPUT LINE TO BUF. AT (US)

BCS EQFENC ;BRANCH IF END--QF-FILE ENCCUNTERED
STA NCHARS ;ELSE SAVE CHARACTER COUNT

Loor LDA (U5),Y ;COPY CONTENT OF INPUT BUFFER...
STA (U6),Y ;...TD OUTPUT BUFFER
INY

kY NCHARS
BNE LooP ;... UNTIL WHOLE LINE COPIED

LDX #6 ;CHANNEL 6 FOR QUTPUT
BRK
.BYTE 6 ;SVC #6 = OUTPUT LINE AT (U6)
JMP NEXT ;REPEAT FOR NEXT LINE
EQFENC RTS ;END
EXPLANATION:

5-7

You may have wondered why byte-oriented I-0 was not used to copy the file
since this would be substantially simpler. One reason is that the line~input SVC
(SVC #5) supports the line editing characters such as BACKSPACE and RUROUT from the
Console, but the byte-input SVC (SVC #3) does nct. Thus using line input gives
more flexibility when the input channel is assigned to the keyboard {Conscle)., SVC
number 3 (byte input) returns control to the application program immediately when a
key is depressed; SVC number 5 does not return until an entire line terminated by a
carriage return is entered. The edited line i3 returned to the user program in the
buffer pointed to by U5, and the number of characters in the line is returned in
the 6502 A& reglster. This count dees not include the carriage return delimiter.

The Example program starts by enabling SVCs and setting US and U6 to the
addresses of the system line buffers, using the SVC 12 function. An 3VC 5 is then
used to input the source input line intc the buffer addressed by U5, and End-ofFile
is tested as before. Note that the SVC 5 function returns the character count in
A, and Y is set to O (therefore ready to index the first character of the line}.
The character count of the line is saved in a temporary variable. The line is then
copied from the input buffer fto the output buffer, The output buffer is then
output over channel 6 with the character count in the Y register.

An alternative to copying the input buffer's contents to the output buffer
would simply be to copy the pointer in U5 to U6. Normally, however, you will want
to use separate input and output buffers since you will be performing other opera-
tions on the line anyway.

Example Program 5: Read Hexadecimal Input Value.

Looking in Table 5-1, you may be surprised to find no direct way to input or
output numeric values. Instead, a combination of twc SVCs must be used to perform
this function. This turns out to be a great deal more versatile. A pair of
definitions are needed to get us started:

Decoding is the operation of scanning a string of ASCII characters and return-
ing the numeric value they represent.

Encoding is the inverse operation; encoding accepts a (binary) value and
returns the string of ASCII characters representing its value.

For example the ASCII string " 010B " when decoded returns the binary value
0000000100001011 ($010B), assuming that hexadecimal decoding was selected. The
following preoblem illustrates how to input and decode a hex value.

PROBLEM: Write a subroutine which reads a hexadecimal number from channel 5 and
returns its value in P-register UO.

SOLUTION:
SVCENB = $EE

H
HEXIN LDA #$80
STA SVCENB ;MAKE SURE SVCS ARE ENABLED

SVC 12 3SVC 12 = GET BUFFER ADDRESSES
LDX #5 ;CHANNEL 5 FOR INPUT

SVC 5 s INPUT LINE

SvC 8 ;DECODE INPUT LINE

RTS

EXPLANATION:

The first thing you may notice about the program above is thne "SVC" mnemonic.
The MTU assembler has a built-in mnemonic for handling SVCs in this manner. TIf you
are using a different assembler, use BRK and .BYTE mnemonics instead as shown for
previous examples.

The enabling of SVCs and selection of the System buffers should be familiar by
now. In praectice, these functions would probably be performed only once during
program initialization, and would not be included in this subroutine, thus reducing
the subroutine to six lines. The SVC 5 operation inputs a line intc the buffer
addrezsed by P-register US, as previously seen. The SVC 8 function searches the
huffer (starting with the character indexed by Y, which was 0 in our case since SVC
5 always returns Y=0) for a character string representing a hex value. Note that
any number of leading blanks may preceed the number, and the number may have any
number of characters, so long as the represented value does not exceed $FFFF. For
sxample, "0ODT7 ", " OD7 " and "D7" will all be acceptable. SVC 8 xeeps scanning
until a non-hex character is encountered. Thus, for example, " 2B7,2 " will return
U0 = $02B7, because the comma will terminate the scan. When control is returned to
the oalling program, the Y register points %o the delimiter (the comma in the
example immediately above), and the A register holds the delimiter sncountered.
This 1s very useful when scanning a line containing multiple values. In addition,
the carry flag is returned to the calling program as a "Valid Data Enccuntered”
flag. Although the example program above did not do so, it is easy for the appli-
cation program to check the status of the carry upon completion of SVC 8; if it is
not set, then no wvalid hex digits were encountered prior to the delimiter (or
and-of-line). The end-of-line delimiter is $0D.

MISCELLANEQUS CONSIDERATIONS WHEN USING SVCS

The example programs presented have used the system input and output line
buffers. In practice, during program generation and debugging, it is advisable to
use cther buffers, because any interaction with the system will cause your buffers
to be "wiped out" (for instance, any command you enter goes into the system input
wuffer). To define your oun buffers merely install pointers to the buffers into US
and UB, instead of using SVC 12. Naturally if you wish to process arguments passed
on the command line, you will need to use the system buffers for that.

SVCs may only be issued by a program running in bank 0. If an SVC is attempted
from any of the other banks, it will be treated as a regular BRK and control will
be returned to CODOS. Programs which must run in banks other than bank 0 should
arrange to have their I/0 and and scanning routines reside somewhere in bank 0.
Tnere are no restrictions on the use of data banks however, and alil SVCs will
preserve the data bank selection. The input and output line buffers are always
assumed to be in bank O 80 be ecareful when (Indirect),Y addressing is used Lo
access these buffers. See Appendix I in this manual and section 4.6 in the Monomeg
Single Board Computer hardware manual for more information on bank switching.

The example programs presented above should provide you with an understanding
of how SVCs work. In the following section, the SVCs available are described
individually. Appendix D contains a complete program using SVCs which you may want
to study. You may also wish to study some of the source programs provided on the
MTU-130 distribution disk, most of which use SVCs extensively. The WMIU-130 Assem-
bler manual also contains an example program using SVCs.

CHAPTER 6.
SVC DESCRIPTIONS

Note: a summary of SVCs is provided in Table 5-1, page 5-2.

SVC #0 ($00)
PURPCSE: Display register contents and return to CODOS Monitor.
ARGUMENTS: None.
ARGUMENTS RETURNED: None.
DESCRIPTION:
SVC #9 returns control %to the CODOS Monitor with a display of the register

contents. It is functionally equivalent to the normal BRK to the CODCS monitor
with 3VCs disabled.

EXAMPLE:

SVCENB = $EE
LDA #$80
STA SVCENB
BRK

LBYTE O ;DISPLAY REGS, RETURN TO MONITOR.

SVC #1 (301)

PURPOSE: Return to CODOS Monitor.
ARGUMENTS: None.

ARGUMENTS RETURNED: None.

DESCRIPTION:

SVC #1 returns control to the CODOS Monitor. It has two possible advantages
over simply using an RTS to return to the Monitor. First, it can be executed
anywhere, even in a subroutine, provided that SVCs are enabled. Second, the value
of the Program Counter (F) shown by the REG command after returning will show the
address of the SVC 0; using a RIS to return to Monitor will not update the P regis-
ter value shown. On the other hand, using an RTS to terminate a2 program has the
agvantage that it can then be called as a subroutine or from within a job file
using SVC 13. You will probably want to use an RTS for normal program terminations
and SVC 0 or SVC 1 for abnormal terminations.

EXAMPLE:

SVCENB = $EE
Lpa 80
STA SVCENB
BRK

JBYTE 1 ;BETURN TO MONITOR.
NOTES:

1. The difference between SVC #0 and 3VC #7 is that SVC #0
register contents at the BRK, and SVC #1 does not.

SVC #2 ($02)
PURPOSE: Output inline message over channel.
ARGUMENTS:

First Byte after SVC 2 = desired channel number.

Second through Nth byte = desired ASCII message text, terminated hy a zero
nyte ($00),

DESCRIPTION:

displays the

8SVC 2 can be wused to display a message at any point in a program (provided

SVCs are enabled). It does net affect any registers. The message may be any
length up to 254 bytes, and can contain any byte including wunprintable characters,

except NUL ($00), which is the message terminator. Control will be returned to the

instruction immediately following the O-byte terminator.
must be assigned to a valid device or file.

EXAMPLE:
SVCENB = $EE ;LOCATION OF SVC ENABLE FLAG
CR - 13 ;ASCII CARRIAGE RETURN
LDA #$80
STA SVCENB
JSR DOIT7
BRK
BYTE 2 ;SVC #2 = OUTPUT MESS3AGE.,.
.BYTE 6 5...0N CHANNEL &

JBYTE CR, 'SUB. DOIT7 DONE, CALLING DOITS.',0
JSR DOITS

This program segment will output this message to channel 6:
SUB., DOITT DONE, CALLING DOITS.
NOTZES:

'. Attempting to output more than 254 bytes will cause the program to "hang".

6-2

The channel specified

2. The message will always be displayed starting at the present position. If
the message should start on a new line, then the carriage return should be explic-
itly included, as in the example above.

3. Be careful to check that you have not forgotten the CHANNEL NUMBER argu-
ment before the message, or the 0-BYTE TERMINATOR after the message!

SVC #3 ($03)
PURPOSE: Input byte from channel.
ARGUMENTS:
X = desired channel number.
ARGUMENTS RETURNED:
A = byte received from channel,
Flags: CY (carry) = 1 means End-of-File was encountered.

DESCRIPTION:

3VC 3 inputs a single byte from a selected channel, which must be assigned to
a valid device or file. The value of the byte returned can be anything, including
control characters ($00 to $FF), if the selected channel is assigned to a file. If
zssigned Lo a normal, character-oriented input device, such as the keyboard, then a
CNTRL-Z (A3CII SUB, $7A) will be interpreted as End-of-File. For files, End-of-
File is true only when no more bytes can be read from the file. It is the pro-
grammer 's responsibility to check the status of the Carry after every 3VC 3 to
ensure that End-of-File was not reached. The A register is not meaningfully
returned if the Carry is set,

EXAMPLE:

SVCENB = $EE ;ADDRESS OF SVC-~ENABLE FLAG
LDA #380
STA SVCENR ;ENABLE 3VCS.

LDX #5 ;SELECT CHANNEL 5

BRK

.BYTE 3 ;8VC #3 = INPUT BYTE ON CHANNEL (X)
BCS EOFHI ;BRANCH IF END-OF-FILE

CMP #'C* ;WAS INPUT CHARACTER 'C'?

This program segment inputs a character from the file or device assigned to channel
5 and checks to see if it was an ASCII ®C".

NOTES:

1. The remaining flags (other than CY) are not meaningfully returned; in any
case, the decimal mode flag will not be set.

6-3

2. Any value byte can be input including 300, $08, $7F, $FF, etec. No editing
characters are recognized.

3. For applications requiring high-speed disk input of large amounts of data,
SYC 15 is preferred to SVC 3. Since the SVC processor is called for every byte of
input using 3VC 3, the overhead involved limits throughput to less than 1,000 bytes
per second. SVC 15 is capable of throughput in excess of 15,000 bytes per second.
SVC #4 ($04)
PURPOSE: OQutput byte over channel.
ARGUMENTS:

X = Channel desired.

A

n

Byte to be output.
ARGUMENTS RETURNED:

FLAGS: CY = 1 if at End-of-File after output operation.
DESCRIPTION:

SVC U cutputs the byte in the accumulator over the channel specified in the X
register. The chammel must be assigned to a valid file or device. Although there
is no need to do so, appliecation programs may wish to test the Carry flag after SVO
4 to distinguish whether the character written was the last character of the file
or was re-written over some other part of the file. If the channel is assigned to
a device instead of a file, the Carry will always be returned set, since End-of-
File has no meaning in this context.

EXAMPLE:
SVCENB = $EE s ADDRESS OF SVC ENABLE FLAG FOR SYSTEM
LDA #480
STA SVCENB ;ENABLE 3VCS
LDA #$07 yBYTE DESIRED TG OUTPUT
LDX #2 ; CHANNEL 2
BRK
BYTE 4 ;SVC 4 = QUTPUT BYTE
JMP THERE
This program segment outputs $07 over channel 2, Note that $07 is not the
character "7" but simply a byte with value 7. If chanrel 2 is assigned &to the

MTU=-130 console display, this will sound a short beep thrcugh the speaker since $07
is the ASCII BEL control character.

NOTES:

1. The value $00 (NUL) can be output using SVC 4, as can any other possible
8-bit code.

2, For applications requiring high-speed disk output of large amounts of data,
SVC 16 is preferred to SVC 4. Since the 3VC processor is called for every byte of

output using SVC 4, the overhead involved limits throughput to less than 1,000

bytes per second. SVC 16 is capable of throughput in excess of 15,000 bytes per
second.

3. After you have finished writing to a file, it is a good practice to FREE
the channel. This ensures that the system buffer for that file will be “flushed"
to disk and that the directory will be updated. Otherwise, the actual disk con-

tents will not be updated until you CLOSE the disk or change the file position.

SVC #5 ($05)

PURPOSE: Input line of text from channel.
ARGUMENTS:

X = Channel number to read from.

U5 = Peinter to desired input buffer for line.
ARGUMENTS RETURNED:

A = Count of characters in line.

Y = 0,

o

lags: CY = 1 if End-of-Fille was encounterec Immediately.

DESCRIPTION:

SVC 5 inputs a line of text from the file or device. The text will be depos-
ted in a buffer wnose address 1s specified in U5. The line of text will be term-
nated by & CR ($0D). After the SVC is processed, the Carry will be set only if no
haracters ccqld be read from the channel because End-of- File was encountered.
The A register will contain a character count for the input line. This count does
not include the $0D terminator. The Y regzister is always returned as 0 to facili-
tate wuser processing of the line using Indireect, Y addressing. End-of-Line is
defined az the first carriage return (30D} encountered.

[¥8

EXAMPLE:
SVCENB = $EE ;LOCATION OF SVC ENABLE FLAG
us = $BA ;P=-REGISTER US LOCATION
LDA #3$80
STA SVCENB ;ENABLE 3VCS
LDA {#3$00
STA us
LDA #3$10
STA US+1 ;DEFINE BUFFER ADDRESS AS $1000.
LDX #5 ; CHANNEL S
BRK
.BYTE 5 ;8VC 5 = INPUT LINE FROM CHAN. (X).

BCS EQOFHI ; BRANCH IF END-OF-FILE
3TA NCHLN ;ELSE SAVE COUNT OF CHARACTERS IN LINE

6-5

This program segment inputs a line of text from channel 5 and places it in a buffer
starting at address $1000.

NOTES:

1. The system maintains a "Maximum Input FRecord Length"™ parameter for text
input, which has a default value of 192 ($C0) characters. If an SVC 5 attempts to
input a line with more than 192 characters, then the system will automatically add
an end-of-line character after 192 characters are read. This prevents SVC 5 from
wiping out all of memory if the chamnel is inadvertently assigned te 2 non-text
file which does not contain end-of~line terminators. The value of the Maximum
Record Length parameter can be altered if it is necessary te read lines of greater
than 192 characters (see Appendix E). The system buffers are only 102 characters
long, however, sc the user will have to provide a buffer elsewhere and not use SVC
12 to define the buffer address.

T

2. When SVC 5 is used to read a channel assigned to the Console, all normal
system editing characters (such as RUBOUT, CTRL-B, ete.) will be in effect

attempt is made to input more than 192 characters from the Console, a =

will be sounded and no more characters will be accepted for inser
affords the user the chance to backup and change the line, perhaps to make
in the 122-character limit.

3. No editing characters are recognized when reading from any other device or

file other than the Console. Therefore if you copy lines with embedded control
oharacters using SVC 5 and SVC 6, these characters will not be corruptec.

4. When maximum throughout is essential for reading disk files, you may wish
to use 3VC 15 instead of SVC 5. If you use SVC 15 to read a large tlock from disk
and then remove lines from the buffer individually as needed, throughput will
normally be substantially enhanced compared with using individal calls to SVC 5 %o
read every line.

SVC #6 (506)
PURPOSE: OQutput line of text on channel.
ARGUMENTS:

X Channel desired.

Y = Number of characters in line.
U6 = Starting address of line of text.
ARGUMENTS RETURNED: None.

DESCRIPTION:

SVC 6 outputs a line of text over a channel which is assigned to a valid file
or device. U must contain a pointer to a buffer containing the text to Dbe sent.

The Y register must hold the number of characters to be sent, not including the
line terminator.

6-6

EXAMPLE :

SVCENB H $EE sLOCATION OF SVC-ENABLE FLAG
Uud = $BC ;LOCATICN OF P-REGISTER U6
LDA #$80
STA SVCENB ;ENABLE SVCS
LDA PROD
STA Uk ;DEFINE ADDRESS OF TEXT TO BE SENT
LDA PROD/256
STA U6+t
LDX 16 1CHANNEL 6
LDy #11 ;11 CHARACTERS IN LINE
BRK
JBYTE 6 ;SVC 6 = OUTPUT LINE
PROD .BYTE 'DISK SYSTEM'

Ie)
o
juiil
"3
o
(6]
o
[0
3

This program segment will output "DISK SYSTEM" followed by an end-of-1inc
R) on channel 6.

t. The line tc be output cannot exceed 254 characters. If the system output

buffer is used, the programmer must not fill the buffer with more than 192 charac-
ters. Failure Sto limit the amount put into the system output buffer will cause
memory above the system buffer to be wiped out.

2. The character count must be passed in Y. This is normally convenient since
if you advance Y after each character is installed in the buffer, it will auto-
matically contain the charactsr count. Also SVCs which perform encoding of numeric
values avitomatically return Y as the character count.

SVC #7 ($07)
PURPOSE: Output string of text on channel.

ARGUMENTS:

X

Channel desired.

Y = Number of characters in string.

U6 = Starting address of string of text.
ARGUMENTS RETURNED: None.
DESCRIPTION:

SVC 7 outputs a string of text over a channel which is assigned to a valid
file or device. U6 must contain a pointer to a buffer containing the text to be

67

sent. The Y register must hold the number of characters to be sent.

EXAMPLE:
SVCENB = $EE ;LOCATION OF SVC-ENABLE FLAG
ub = $BC ;LOCATION OF P-REGISTER U6
LDA #3$80
STA SVCENB ;ENABLE SVCS
LDA PROD
STA ub ;DEFINE ADDRESS OF TEXT TO BE SENT
LDA PROD/256
STA U6+t
LDX #6 ; CHANNEL 6
LDY #11 ;11 CHARACTERS IN LINE
BRK
.BYTE 7 ;SVC 7 = QUTPUT STRING
PROD .BYTE 'DISK SYSTEM'
This program segment will output "DISK SYSTEM". NO End-of-line character will be

added by the system.
NOTES:

1. The text to be output cannot exceed 254 characters.

2. The difference between SVC #6 and SVC #7 is that SVC #6 outputs a carriage
return at the end of the string, and SVC #7 does not. Naturally carriage returns
can be embedded in the string itself if desired.

SVe #8 ($08)
PURPOSE: Decode hexadecimal ASCII string to 16=bit wvalue.
ARGUMENTS:

Y = Index to first character of string to be decoded.

U5 = Peinter to the string of ASCII characters.
ARGUMENTS RETURNED:

A = Delimiting character encountered.

¥

Index to delimiting character.

Flags: CY = 1 1if at least one valid hex digit was encountered prior to the
delimiter.

U0 = Value returned (in normal low-byte, high-byte order).

6-8

DESCRIPTION:

SVC 8 scans a string of characters in memorv and returns the numeric value
represented by the string. The string must represent a hexadecimal number.

EXAMPLE:
SYCERNB S $EE ;LOCATION OF SVC ENABLE FLAG
s8] = £80 ;PSEUDO-REG. U0
us = 4BA ;PSEUDO-REG. US

LDA #$80

STA SVCENB ;ENABLE SVCS

LDA #500

STA us ;SET U5 TO ADDRESS OF START COF STRING

DA #$10

STA Us+1

LDY #0 ;START AT 13T CHARACTER IN STRING

RK

BYTE 8 ;SVC & = DECODE HEX

BCC ERRCR ;BRANCH IF NO LEGAL HEX NUMBER FOUND
This program segment decodes a string of characters starting at $1000 and returns
the value in UD. If the contents of memory starting at $1000 was "02B " (330, $32,
$k2, 820), then at the ond of the program segment, A = $20, Y = $03, and the carry

flag is set. Memory location $00BQ (UC) = $2B, and $00B1 = $00.

NOTES:

1. The string to be decoded may contain any number of leading blanks or
2erocs.

2. The hex number must be unsigned.

3. The decoding process halts as soon as a delimiter is encountered. Any
non-hex character is a delimiter, including a blank.

4. If ne valid hex characters are encountered prior to the delimiter, the
carry is cleared and UC = ©. This provicdes the user with the opticn of either

accepting a blank field as a zero entry or rejecting it as invalid.

5 See Chapter 5 Example Program 5 for a complete example of hexadecimal
input.

SVC #9 ($03)
PURPOSE: Decode decimal ASCII string to 16-bit value.
ARGUMENTS:

Y = Index to first character of string to be decoded.

e

75 = Starting address of string of ASCITY characters.

6-9

ARGUMENTS RETURNED:

A

Delimiting character encountered.

Y

i

Index to delimiting character.

Flags: CY = 1 if at least one valid digit was encountered prior to the delim-
iter.

U0 = VYalue returned (in normal low-byte, high-byte order).

DESCRIPTION:

SVC 9 scans a string of characters in memory and returns the numeric value
represented by the string. The string must represent a decimal integer.

EXAMPLE:
SVCEND = $EE ;LOCATION OF SVC ENABLE FLAG
Uo & $BC +PSEUDO~REG. U0
us = $BA ; PSEUDO~REG, US
LDa #3$80
STA SVCENB ;ENABLE SVCS
LDA #$00
STA us ;SET U5 TO ADDRESS OF START OF STRING
LDA #$10
STA Us+1
LDY #2 ;START AT 3RD CHARACTER IN STRING
BRK
+BYTE 9 ;SVC 9 = DECODE DECIMAL

BGC ERROR ;BRANCH IF NC LEGAL DECIMAL NUMBER FOUND

This program segment decodes a string of characters starting at the third character
in a string located at address $1000 ‘r memory. If the string at $1000 was "YZ
200,23 ", then at the end of the program segment, 4 = $2C (","), ¥ = 6, and the
carry is set. Memory location $00BO (U0) contains $2C and $00B! contains 301,
since 300 decimal is 012C hex.

NOTES:

1. The string being decoded may contain any number of leading blanks or
zZeroes.

2. The decimal number must be unsigned.

3. The decoding process halts as soon as a delimiter is encountered. Any
non-digit character is a delimiter, ineluding a blank.

4, If no valid digits are encountered prior to the delimiter, the carry is
cleared and U0 = 0. This provides the user with the option of either accepting a
blank field as a zero entry or rejecting it as invalid.

6-10

SVC #1310 ($04)
PURPOSE: Encode 16-bit value to hexadecimal ASCII string.
ARGCUMENTS:
Y = Index to byte in buffer to receive first character encoded.
U0 = Value to be encoded.
U6 = Pointer to buffer.
ARGUMENTS RETURNED:

1 = Index to byte after last character of hex number (Y returned = Y passed+4).

DESCRIPTION:

SVC 10 encodes the unsigned value in UQ into four hex characters starting at
the memory location addressed by (U6),Y.

EXAMPLE :
SYCENR = $E8 ;ADDRESS OF SVC ENABLE FLAG
0 = $BO ;ADDRESS OF USER P-REG U0 (VALUE)
ANSWER FoWy 2 ;‘6-BET VALUE TQ BE OUTPUT
HEXOUT LDA #480
STA SVCENB ;ENABLE SVCS
LDA ANSWER
STA ue ;COPY ANSWER TO U0 (LOW BYTE)...
LDA ANSWER+1
STA U0+1 ;...AND HI BYTE.
BRK
.BYTE 12 ;SVC 12 = GET LOCATION OF SYSTEM BUFFERS
LDY #0 ;START "7 137 CHARACTER OF BUFFER
BRX
.BYTE 10 ;SVC 10 ($0A) = ENCODE UO TO 4 ASCIT CHARS.
LDX #6 ;CHANNEL 6 FOR OUTPUT
BRK
.BYTE 6 ;S¥C 6 = OUTPUT LINE TO CHANNEL

This program segment displays the hexadecimal value of the contents of ANSWER on
channel 6. If ANSWER contained $3B and ANSWER+1 contained $04, and channel 6 was
assigned to the Console, bthen "OA3B" would be displayed, followed by a carriage
return.

SVC #11 (40B)
PURPOSE: Encode 16-bit value to decimal ASCII string.
ARGUMENTS:
Y = Index to byte in buffer to receive first character encoded.
U0 = Value to be encoded.
U6 = Pointer to buffer,
ARGUMENTS RETURNED:
Y = Index to byte after last character of decimal number.
DESCRIPTION:

SVC 71 encodes the unsigned value in U0 into a decimal ASCII string starting at
the memory location addressed by (U6),Y.

EXAMPLE:
SVCENB = $EE ;ADDRESS OF SVC ENABLE FLAG
o) = $30 :ADDRESS OF U3ER P-REG UOQ (VALUE)
ANSWER *=%42 ;16=BIT VALUE TC BE QUTPUT
HEXQUT LDA #3$80
STA SVCENB ;ENABLE SVCS
LDA ANSWER
STA vo ;COPY ANSWER TO Y0 (LOW BYTE)...
LDA ANSWER+1
3TA U0+1 ;... AND HI BYTE.
BRK
.BYTE 12 ;8VC 12 = GET LOCATION OF SYSTEM BUFFERS
LDY #8 1START 7 9TH CHARACTER OF BUFFER
BRK
.BYTE 1 ;SVC 11 ($0B) = ENCODE U0 TO ASCIT CHARS.
LDX #6 ;CHANNEL 6 FOR QUTPUT
BRK

.BYTE 6 18VC 6 = QUTPUT LINE TO CHANNEL

This program segment displays the first 8 characters of the system output buffer
and the decimal value of the contents of ANSWER on channel 6. Supnose ANSWER
contained $3B and ANSWER+1 contained $0A, channel 6 was igned to the Console,
and the Ffirst 8 bytes of the system output buffer contained MANSWER =". The
Console would then display, "ANSWER =2619", followed by a cerriage return.

NOTES:

t. The encoded string will have from 1 to 5 characters, depending on the
magnitude of the value in UC.

SVC #12 ($0€)

£: Obtain location of system input line buffer, output line buffer, and
arguments passed to user-defined command.

¥ = Index to first argument passed.
U5 = Pointer %to System Input-line buffep,

U6 = Pointer to System Output-line buffer.

User-defined programs may process arguments pas

in the same manner ag for
CODOS bu -in commands, by using SVC 12, In add STC 12 retur ing
address of the CODOS text input buffer and o 3 Which may L

program for input-output.

EXAMPLE:
SVCENBE = ;ADDRESS COF SVC-ENABLE FLAG
$2000 SAMPLE PROGRAM ORICIN
MYCOMD LDA #5360
STA SVCENB ;ENABLE SVCS
BRK
LBYTE 1z ;SVC 12 ($0C) = GET BUFFERS, ARGUMENT POINTER
LDA (Us),Y ;FETCH FIRST CHARACTER OF ARGUMENT
cup #60D ;TEST IF CARRIAGE RETURN
BEQ NOARG (BRANCE I SND-OF-LINE (NO ARGUMENT)
CMP #rot
3EQ NOARG ;BRANCH IF COMMENT {NC ARGUMENT)
CMP feme
BEQ MONDAY ;BRANCH IF FIRST CHAR IS "M"
cMP $r7e
BEQ TUETHR ;BRANCH I¥ FIRST CHAR IS non

This program segment sets U5 to the

location of the CODOS input buffer and U6 to
the location of the CODOS output buffer

The System Input Buffer on entry +to a

"

program always contains the CODOS ommand which initiated the program. 3VC 12
returns Y as a pointer to the firs non-blank character following the command.
This allows a program to process arguments. For example, if the above program
segment was initiated by the CODOS command:

MYCOMD T

then {(U5),Y addresses "T", and the program would branch to TUETHR (not shown). If
the program was entered by

GO 2000 M

then the program would branch te MONDAY instead.

SVC #13 ($0D)
PURPOSE: To execute any CODOS Monitor command.

ARGUMENTS:

U5 = pointer to command in memory. Command must be terminated by CR ($0D).

ARGUMENTS RETURNED:

A1l registers and Pseudo-registers are returned as set by the

Monitor command
executed (see note 1 below).

Registers not changed by the command are unaffected.

DESCRIPTICN:

SVC #13 ($0D) is the most powerful of all SVCs provided. Creatively used, it
can give tremendous leverage tc an application program. Simply stated, SVZ 2
calls the CODOS Monitor as a subroutine, with the command read from 1 Y i
of from channel 1 (normally the Console). Each invocation of 8VC #13 will axacute
one CODOS Monitor command and then return %o the invoking program in the normal
manner. Thus a program can easily OPEN or CLOSE ¢rives, FILL or COPY memory, GET,
SAVE or TYPZ files, ete. Utilities and User-definad programs may also bz erecuted
in the wusual manner. This provides a way to chain programs together, load over-
lays, selectively exscute certain programs based on computed results, etc, To use
SVC #13, the desired command must exist 23 an ASCII string in memory, terminated by
a Carriage Return (30D}, and P-regisier U5 must contain the address of the start of
chis command string.

e
1

EXAMPLE :
SVCENR = $EE
us5 = $BA
*o $2100 ;LOCATION OF COMMAND TC BT EXECUTED
LBYTE 'PROGTWO',$0D ;EXECUTE PROGRAM 2 COMMAND
OVRLAZ LDA #4680
STA SVCENB SENABLE SVCS
LDA #00
STA s ;DEFINE ADDRESS OF COMMAND IN U5
LDA #$21
STA U541
BRK
BYTE 13 ;EXECUTE MONITOR COMMAND AT $2100 ("PROGTWO")
BRK
JBYTE 2 ;DISPLAY INLINE MESSAGE
.BYTE 2 ;ON CHANNEL 2

.BYTE $D, "PROGRAM 2 EXECUTION COMPLETE.',0

This program segment executes the Monitor command "PROGTWO", which 1loads and
executes the User-defined program called PROGIWO.C from the default drive. When
PROGTWO returns (by executing an RTS), it will effectively return to the program
segment above instead of to the CODOS Monitor. The message "PROGRAM 2 EXECUTION
COMPLETE" is then displayed using SVC #2.

6-14

NOTES:

1. Since the return path to the invoking program is stored on the stack, the
Monitor command executed must not redefine the stack pointer {except by normal
usage of balanced JSR, RTS, pushes and pops, etc., of course). Therefore the REC
command camot be used with "S=n" as an argument.

2. When executing a Utility program or User-defined command, it is the pro-
grammer's responsibility to ensure that no memory conflicts occur with the invoking
program. Naturally, if you execute a program which occupies the same memcry as the
invoking program, you will wipe it out. Of course you could SAVE any conflicting
memory btlocks using another 3VC #13, and restore them with a GET.

3. When executing a program, registers and Pseudo-registers may be used for
passing arguments in either direction (to and from the program being executed), if
deszired.

L. SVC #13's can be nested up to seven deep., That is, a program coan execute
another program which in turn uses 3SVC #1713 to execute other commands or prograns.

5. A program invoked using SVC #1713 will return %o the CODQS Monitor and not ic
the invoking program if an SVC #0 or SVC #1 i3 used. Only an RTS instruction caw
be used to return to the invoking program.
YC #14 ($0E)
PURPOSE: To determine the channel assignment for a selected channel.
ARGUMENTS:

¥ = Channel number desired, @ to 9.

ARGUMENTS RETURNED:

Flags: Carry is set if the channel is assigned. Other flags undefined.

A = disk drive number if returned zz 0 to 3; otherwise returned as the single-
character device name. Not meaningfullv returned if CY is clear.

DESCRIPTION:

SVC 14 ($0E) enables a program to determine if a specified I-C channel is
assigned or available. If it is assigned, then the device or drive assigned can
also be determined.

EXAMPLE:
SVCENB = $EE ;SVC ENABLE FLAG
LDA #380
STA SYCENB JENABLE SVCS
LDX #6 ; CHANNEL 6
BRK
.BYTE 14 ;SVC 14 (40E) = QUERY CHANNEL STATUS
BCC ISAVAL {BRANCH IF CEAMNEL 6 IS UNASSIGNED

[ea)
1

o

=

CMP 4

BCC ISFILE sBRANCH IF ASSIGNED TO FILE
CMP #INT ;"N = NULL DEVICE NAME

BEQ ISNULL ;BRANCH IF ASSIGNED TO NULL DEVICE

This program segment tests the current assignment of channel 6. If it is unas-
signed, the program branches to ISAVAL (not shown). If the channel is assigned bto
a file on disk, it branches to ISFILE, Otherwise, the channel must be assigned to
a device, in which case the device name is checked and a branch to ISNULL is made
if the Null device is assigned.

SVC #15 ($0F)
PURFOSE: To read a record from a channel.
ARGUMENTS:

X = Channel number desired, 0 to 9. Must already be assigned to a valid file
or input device.

<3
1

= Starting address to receive contents of record in the currentlv selected
data bank.

U2 = Size of record to be read, in bvies,

ARGUMENTS RETURNED:

U1 = Address of last byte read, plus one.
J2 = Actual number of bvtes read.

Flags: If Carry is set then End-of-File was encountered before any bytes could
be read. All other flags are not meaningfully returned.

DESCRIPTION:

SVC 15 ($0F) reads a block of bytes from a channel.

EXAMPLE :
SVCENB = $EE ;SVC ENABLE FLAG ADDRESS
U = $B2 ;P~REGISTER U1
vz = $B4 ;P-REGISTER U2
LDA #$80
STA SVCENB ;ENABLE SVCS
LDA #$00
STA Ui ;DEFINE STARTINC ADDRESS FOR RECORD = $2000...
LDA #3520
STA Ui+
LDA #$20 ;DEFINE RECORD SIZE AS 800 DECIMAL BYTES=$0320
STA U2
LDA #303
STA U2+1
LDX 9 ;CHANNEL 5

6-16

BRK

.BYTE 15 ;SVC 15 (OF) = READ RECORD INTC MEMORY
BCS DONE sBRANCH IF END-OF-FILE

This oprogram segment reads 800 bytes into memory from channel 6§, stariing at
address $2000,

NOTES:

q

If the specified channel is assigned to a file, then reading begins at the
current file position and continues until the specified number of bdytes are read or
P

End-of-File is encountered. Any type of data bytes may be read: there are no
raserved i

End-of-Record or Ind-of-File characters.

¢), then reading continues
of-File character [ASCI
25 parc ¢f the r~ecord in

2. If the channel is assigned to a device (not a fil
until the specified number of bytes are read or the End
SUB = $14 = CNTRL-Z) is read. The CNTRL-Z is not returned
memory .

If the Carvy lag is returned set then ne byvtes ai all could be read from
nel be

1 use End-of-File was encountered immediately.

If the Carry flag is returned clear then at least 1 byte was read hefore
f~ file. The actual number of bytes read is returned in U2. If U2 conta
ler count than was specified buit the Carry is returned clear, it indicates
was encountered during the read oneration.

read into the memory bank tha% corresponds to

5. TRemember that the record is
d ted when SVC #15 is executed. Normally this is bank 0.

ata bank selec

6 When reading large amounts of data from a file, using large records will
significantly improve the reading speed. For example, if a program is to read 1000
80w=character records, the obvious way to do it is to use a loop which invokes SVC
#75 1000 times with U2 s to 80. However, a significant speed improvement can be
realized by instead using, say, 100 3VCs of 800 bytes each, if sufficient memory is
vailable for an 800 byte buffer. Bv “c*nﬁ large records it is possible to read in
excess of 15,000 bytes per second continuous throughput from a file.

@ O
ot

w

SVC #16 ($10)
PURPOSE: To write a record to a channel
ARGUMENTS :

¥ = Channel number desired, 0 to 9. Must already be assigned to a valid file
or input device.

U1l = Starting address of record in memory in currently selected data bank.
U2 = Size of record tc be written, in bytes.
ARGUMENTS RETURNED:

Flags: If Carry is set then the channel was positiocned at End-of-File after
completing the write.

DESCRIPTION:

SVC 16 ($10) writes a block of bytes in memory to a channel,

EXAMPLE :
SYCENB = $EE ;SVC ENABLE FLAG ADDRESS
U1 = $B2 3P-REGISTER U1
U2 = $BY4 ;P-REGISTER U2
LDA #$80
STA SVCENB ;ENABLE SVCS
LDA #$00
STA U1 ;DEFINE STARTING ADDRESS FOR RECORD = $2000...
LD& #$20
STA U141
LDA #$20 ;DEFINE RECORD SIZE AS 800 DECIMAL BYTES=$0320
STA u2
LDA #$03
STA U2+1
LDX #6 ; CHRNNEL 6
BRK
.BYTE 16 ;SVC 16 ($10) = WRITE RECORD

This program segment writes a record on channel 6. The record to bes written is 800
decimal bytes long and starts at $2000 in memory.

NOTES:

1. 1If the selected channel is assgined to a disk file, then writing begins at
the current file position. Any type of data bytes may be written; no special End-
of-Record characters will be written by the system. If the CY is returned clear,
it indicates that the the file was not positioned to End-of-File on the completion
of the write operation (therefore part of the file must have been overwritten).

2, If the specified channel is assigned tc a device, then writing continues
to that device until the specified number of bytes has been output. The CY flag is
always returned set when writing to a device.

3. Using large reccrds will improve writing speed. For example, writing 100
records of 80 bytes each takes longer than writing 10 records of 800 bytes each.
Continuous output te disk in excess of 15,000 bytes per second is possible by using
large records,

4. After you have finished writing te a fils, it is a good practice to FREE
the channel. This insures that the system buffer for that file will bhe "flushed"
to disk and that the directory will be updated. Otherwise, the actual disk con-
tents will not be updated until you CLOSE the disk or change the file position.

5. TRemember that the record is written from the memory bank that corresponds
to the data bank selected when SVC #16 is executed.

SVC #17 ($11)

g

URPCSE: To set the file position for a channel to Beginning-cof-Data.

ARGUMENTS:

X = Channel number desired, O to 9. Must already be assigned to a valid file
or device.

ARGUMENTS RETURNED: HNone,
DESCRIPTION:

After executing SVC 17 ($11), a subseque

nt read or write operation will access
the first data Dyte of the file assigned to the

specified channel.

EXAMPLE:
SVCENEB = $EE ;SVC ENABLE FLAG ADDRESS
LDA #$80
STA SVCENB ;ENABLE 5VCS
LDX #5 ;SELECT CHANNEL 5
BRK
.BYTE 17 $SVC 17 ($171) = "REWIND" THE FILE

is rrogram segment positions the file assigned to channel 5 to Beginning-of-Data.

NOTES:

1. If the selected channel Is assigned %o a device instead of a file, no
action takes place.

o

2. A file is always initially positioned *o 3Beginning-of-Data when it is
assigned.

3. Executing SVC 17 will always result in a physical disk access, even if the
file is already positioned at Beginning-of-Data.

SVC #18 ($12)
PURPOSE: To set the file position for a channel to End-of-File.
ARCUMENTS ¢

X = Channel number desired, 0 to 9. Must already be assigned to a valid file
or device.

ARGUMENTS RETURNED: None.
DESCRIPTION:

SVC 18 ($12) positions the file assigned to the specified channel to End-of
file. A subsequent write cperation would therefore append the file.

EXAMPLE:

SVCENB = $EE ;SVC ENABLE FLAG ADDRESS
LDA #3$80
STA SVCENB sENABLE SVCS
LDX #6 ;SELECT CHANNEL 6
BRK
.BYTE 18 ;3VC 18 {$12) = MOVE TO END-OF-FILE

This program segment positions the file assigned to channel 6 to End-of-File.
NOTES:

1. If the selected channel is assigned to 2 device instead of = file, no
action takes place.

2, A rile is always initially positioned to Beginning-of-Data when it is
assigned to a channel.

3. Executing SVC 18 will always result in a physical disk acecess, even if the
file is already positioned at End-of-File,
SVC #19 (313)
PURPOSE: To specify the file position for a channel.
ARGUMENTS :

X = Channel number desired, 0 to 9. Must already be assigned to a valid file
or device.

U7 = Desired file position (3 bytes),
ARGUMENTS RETURNED: None.
DESCRIPTION:

SVC 19 ($13) positions the file assigned to the specified channel to the
position specified by UT7.

EXAMPLE :
SVCENB = $EE ;SVC ENABLE FLAG ADDRESS
u7 = $BE ;P=REG U7 (3 BYTES LONG)
LDA #3$80
STA SVCENB ;ENABLE 3SVCS
LDA #72
STA u7 ;SELECT POSITION TO ACCESS 73RD BYTE OF FILE...
LDA #0
STA U7+1
STA U7+2
LDX #6 ;SELECT CHANNEL &
BRK

.BYTE 19 ;SVC 19 ($13) = POSTITION CHANNEL TO (U7)

6-20

This program segment positions the file assigned to channel 6 to $000048. A subse-
quent read or write will begin at this position.

NOTES:

If the selected channel is assigned to a device instead of a file, no
akes place.

2. A file is always initially positioned ‘o Begimning-of-Data when it is
assigred to a channel.

3. Executing SVC 19 will always result in a physical disk access, even if the
is already positioned a% the location specified by UT.

. If the position specified by U7 is beyond the current End-cf-File, the file
will be postioned fo the current End-of-file.

5t The 16-bit arithmetic Pseudo-Processor {3V #27) provides a very
method of compubing 24~bit file positions giver a
record number. See Chapter 7 for details.

ry
=bit record size and a

SVC #20 (314)

PURPOSE: To determine the

gl
o]
L

sition of a file assigned to a channel,

ARGUMENTS:

X = Channel number desired, 0 to 9. Must already be assigned to a valid file
or device,

ARGUMENTS RETURNED:

SVC 20 ($14) returns the present file position for the specified channel in UT.

EXAMPLE:
SVCENB H $EE ;SVC ENABLE FLAG ADDRESS
o7 = $BE ;P=REG U7 (3 BYTES LONG)
LDA #380
STA SVCENB ; ENABLE SVCS
LDX #8 ; CHANNEL 8
BRK
.BYTE 20 ;SVC 20 ($14) = QUERRY FILE POSITION

This program segment sets U7 to the present position of the file assigned to
channel 8. For example, if 82,965 bytes had been read thus far starting at Be-
zinning-of-Data, then $BE = $15, 3BF = $44, and %00 = $01.

NOTES:

6-21

1. If the specified chaunnel is assigned to a device (not a disk file), then U7
is always returned as $000000.

SVC #21 ($75)
PURPOSE: To assign a channel to a device or file.
ARGUMENTS :
A = Disk drive number, 0 to 3, or single-character device name to be assigned.
- ¥ = Channel number desired, O to 9.
U3 = Pointer to file name in memory (applies to assignment to file only).
ARGUMENTS RETURNED:

A = status byte as follows:

Bit 6 = File flag. If no® sebt, then channel assigned to device, nob file.
Bit 7 = 01d flag. If set, then file already exists.
Bit 5 = Locked flag. If set, then file is looked (read-only).

Flags: Sign flag and Overflow flag reflect value of bits 7 and 6 respectively
of status byte as described above.

DESCRIPTION:

3SVC 21 ($15) assigns the channel specified by X to the device or disk drive
specified by A.

EXAMPLE:
SYCENB = $EE ;SVC ENABLE FLAG ADDRESS
U3 = $B6 $P=REG U5
FILENM .BYTE *MYDATA5.D' ;DESIRED FILE NAME
LDA #4580
STA SVCENB ;ENABLE SVCS
LDA #FILENM
STA u3 ;INSTALL POINTER TO FILE NAME IN U3
LDA #TILENM/256
STA U3+1
LDX #5 ;CHANNEL 5
LDA #1 :DISK DRIVE 1
BRK
.BYTE 21 ;SVC 21 = ASSIGN CHANNEL
BPL NOFILE ;BRANCH IF FILE DOES NOT ALREADY EXIST

This program segment assigns channel 5 to a file called MYDATAS.D on drive 1, and
pranches to NOFILE if it is not an old file.

NOTES:
1. U3 is not used if the channel is a=signed to a device (not file).

6-22

2. The file name can be terminated by any character which is not legal in a
file name. The extension may be included or omitted.

3. Assigning a channel to a file always positions the file te Beginning-of-
Data.

L4, Assigning a channel which is already assigned, automatically frees the cld
channel assignment before making the new assignment,

5. See SVC #29 for more information on file assignments.

SVC #22 ($16)
PURPOSE: To free a channel.
ARGUMENTS:
X = Channel number desired, 0 to 9.
ARGUMENTS RETURNED: None.
DESCRIPTION:

3VC 22 ($16) frees the channel specified by X.

EXAMPLE:
SVCENB = $EE i1SVC ENABLE FLAG ADDRESS
LDA #$80
STA SVCENB ;ENABLE SVCS
LDX #5 ; CHANNEL 5
BRK
.BYTE 22 ;SVC 22 = FREE CHANNEL

This program segment frees channel 5.
NOTES:

1. Freeing a channel which is unassigned results in no action.

2. It is important that programs which write to disk always free the channel
Wwhen the file is completed. Otherwise, if the disk is remcved from the drive by
the operator without a CLOSE command, the file c¢ould be incomplete.
SvVe #23 ($17)
PURPOSE: To truncate a file at the present file position.
ARGUMENTS:

¥ = channel number to truncate (already assigned to a file).

ARCGUMENTS RETURNED: none.

DESCRIPTION:

SVC #23 makes the present file position End-of-File. It is normally wused to
discard the unwanted end part of a file, or to discard the unwanted residual when
overwriting an exisitng file with =z shorter file.

EXAMPLE :
SVCENB S $EE ; SVC-ENABLE FLAG LOCATION
ut = $BE ;P-REG U7 (3 BYTES LONG) FOR FILE POSITIONING
LDA $#80
STA SVCENB sENABLE 3VCS
LDA #0
STA u7 ;SET U7 TO $002000 (= 8K BYTES)
LDA #320 :
STA UF+1
LDA {0
STA U7+2
LDX #6 ;CHANNEL 6 FILE
BRX
.BYTE 19 ;POSITION FILE TO 8K BYTES
3RK
.BYTE 23 ;TRUNCATE REST OF FILE, IF ANY
This program segment truncates the file o a maximum of 8% bytes of data. If the
file contained less than 8X of data, it would not be changad, If it contained more

than 8% of data, the rest of the file would be discarded.

NOTES:

1. If the channel is assigned to a device instead of a file, no action takes
place.

SVC #24 ($18)
PURPOSE: To define the address of an interrupt service routine.
ARGUMENTS:

U0 = peointer to interrupt serviece routine for IRQ.
ARGUMENTS RETURNED: none,
DESCRIPTION:

SVC #24 allows a user program to use interrupts, without interfering with
operation of 3VCs, by defining the address of the desired interrupt-service sub-
routine. After executing SVC #24, any IRQ will cause control to be transferred to
the user-defined service routine. BRKs will still be processed by the SVC proces-
sor in the normal manner. The following paragraph explains BRK and IRQ processing
by CODOS in detail.

when CODOS is beoted up, it sets the IRQ ventor to point to CODOS's TRQ/BRK
processor. Thereafter, when a BRK or IRQ occurs, control vectors to CODOS. CODOS
tes.s the BRK bit in the processor status word to determine whether a BRK occurred
Thee madibivs doratoon
6-24

or an IRQ occurred. If a BRK occurred, it checks the status of SVCENB, and either
branches to the SVC processor or simply displays the registers and branches to the
Monitor. If the processzor status word indicates that an interrupt has occurred,
CODOS jumps to the user's service routine., This check is very fast and oply adds
2l machine cycles Lo the time otherwise needed %o arrive at the service routine.
registers and stack are preserved exactly as they would pormally be if vector-
directly to the service routine. If SVC #2U4 has never been used to define the
address of the service routine, then <the CODOS monitor will be re-entered
with an "INTERRUPT (IRQ)" message.

EXAMPLE
SVCENB £ $EE ; SVC ENABLE FLAG ADDRESS
Uo = $BC s PSEUDO REGISTER U0 (2 BYTES)
LDA #380
STA SVCENB ;ENABLE SVC3...
LDA #300
STA a0 ;DEFINE U0 = ADDRESS OF SERVICE ROUTINE = 42000
LBA #3$20
3TA U0+1
BRK
LBYTE 2b ;SVC 24 = DEFINE IRQ SERVICE ROUTINE ADDRESS
CLI :ENABLE INTERRUPTS

This prozr

am segment defines the IRU service routine %o be at $0800. Thereafter,
; will cause control to veetor to 32000, BRKs, howsver, will continue to de

NOTES:

A non-maskable interrupt normally causes re-entry into CODOS and a register
printout. Typically, only the kevboard INT key will cause non=maskable interrupts.
You may freely modify %ha NMI ijump vector abt $02FA - $02FC.

2. In rare cases, a program must respond +to an interrupt sc fast that it
cannot tolerate even the extra 24 machine cycles of overhead used by CODOS. In

this case, the program should not use SVC #24 to define the interrupt service
routine location, but should medify the normal system IRQ vector directly.
Naturally, once this 1is done, all BRKs and TIRQs will g0 to the user's service
routine, thug disabling the SVC facility. The IRQ jump vector is at $02FD-$02FF.

3. Memory location $00EC is used by CODOS for temporarily saving the A reg-
ister before entering the user-defined service routine,

L, The User's interrupt service routine is entersd with all registers in the
same condition as they would be if the service routine was entered by direct
vectoring, as described in note 2 above.

5. The interrupt service routine must reside in memory bank 0. The service
rcutine 1is entered with both Dbank selection registers unchanged from the values
they had when the interrupt was recognized. The Interrupt Mode flip-flop will be
set however which cancels the effect of the oprogram bank register. The service
routine must return with an RTT instrucition fo properly reset this flip-flop.

& Aprendix D centains a complel~ program lisiting wusing interrupts for
highwspeed, direct-to-disk data aguia’

6-25

sve #25 ($19)
PURPOSE: To define the address of a user-defined error recovery routine.
ARGUMENTS:
U0 = pointer to desired error recovery procedure.
ARGUMENTS RETURNED: none.
DESCRIPTION:

SVC #25 Provides a method by which the advanced programmer can defeat the error
handling procedure built into the CODOS Monitor. Normally, when an error in an SVC
or command is detected, CODOS aborts the program, displays an error number and
mesage, and returns control to the Monitor. 1In certain circumstances, the user may
wish to ‘temporarily bypass this error recovery. To do this, use SVC 25, wit!
Pseudo-register U0 specifying the address of the User's machine-language e ror
processing routine. Thereafter, any error detected by CODOS will exit &to the

- user-defined error processor. On entry to the user-defined error processcor,
registers are all undefined; memory location $00ED contains the error number W t
would normally be displayed by CODOS (see Appendix A). The tep of the stack
contains the address where the error was detected (not the address of the errori).
The state of the system is undefined and usually unprotected. It is entirely the
user's responsibility to take appropriate action. Usage of SVC #25 should be
reserved for very special circumstances and should not be used indiscriminantly.

EXAMPLE:
SVCENB = $EE
vo - $B0
LDA £00
STA uo :SET USER ERROR PROCESSOR ADDRESS TO $8000
LDA #$80
STA U0+
BRK

.BYTE 25 ;REDEFIL: ERRCR VECTOR

This program segment enables a user error-processor at $8000.
NOTES:

1. The User-defined error processor remains in effect until the system is RESET,
or SVC #26 is executed.

3. Executing an RIS from the user error-processor is not ar appropriate method to
reenter the erring program and may crash the system.

4, One method of error recovery ia:

a. Execute SVC 25 to define your error-recovery routine.

b. Save the stack pointer immediately before executing the SVC desired.

¢. 1In the error-processor, examine the error number in $00ED and then clear it
to 0. If the error is not recoverable, execute SVC #2606, issue your own error
message, and abort to Monitor. If the error is recoverable, correct it, restore
the stack, and re-execute the desired SVC.

5. “ie User-defined error processor must reside in bank 0.

6-26

SVC #26 ($1A)

PURPOSE: To reinstate normal error processing by CODOS.
ARGUMENTS: none.

ARGUMENTS RETURNED: none.

DESCRIPTION:

SVC #26 restores the normal error processing by CODOS after previous execution
of SVC #25.

EXAMPLE ;
SVCENB = $EE
LDA #$80
STA SVCENB
BRK
.BYTE 26 ;SVC 26 = RESTORE NORMAL CODOS ERROR-PROCESSING

This program segment cancels the effect of the previous SV #25.

Executing SVC #26 without a previous SVC #25 is permissable.

ARGUMENTS: First through n-th bytes f{ollowing the SVC are instructions for the
16-bit pseudo processor. k& zero instruction {not zero byte) terminates the string.

ARGUMENTS RETURNED:

Flags are returned as described in section 7

DESCRIPTION:

SVC #27 enters the built-in CODOS 16-bit arithmetic Pseudo=-processor for
performing double precision arithmetic including multiply and divide,and for compu-
ting 24-bit file positions. The operation of the Pseudo-processor is deseribed in
Chapter 7.

svC #28 (31C)

PURPOSE: To return information about the version of CODOS which is running.

ARGUMENTS: none.

6-27

ARGUMENTS RETURNED:

A

X =
Y =

High address byte of the System 8K RAM on the K-1013 disk controller

(Will always be $E0 on the MTU-130 system).

Release level of CODOS, expressed as two hex digits.

number indiecating the kind of system on which CODOS 1is running.
Presently defined codes are:

Code

U
oMo

DESCRIPTION:

svVC

For example an AIM system
register will contain the

MTU=130 with 8-inch floppy disk{s)
KIM-1 with 8-inch floppy disk(s)

AIM-65 with 8-inch floppy disk(s)
PET or CBM with 8-inch floppy disk(s)
SYM-1 with 8-inch floppy disk(s)

#28 ($1C) returns information about the particular version of the CCODOS
system which is running.

hex digits.

numeric

code

For example,
indicating
purpose of this SVC is to

The A register is the first page of System REM for CODOS.
with System BAM at 3$8000-%9FFF will return A-$80. The X
Release level of the operating system, expressed as LwWo
Release 2.0 will return X=$20. The Y register returns a
which target machine CODOS should be running on. The
provide a mechanism for a program to make decisions based

on the hardware and operating system environment.

EXAMPLE:

SVCENB

S $EE
LDA #80
STA SYCENB
BRK

.BYTE 28

CpPY #3
BEQ ITSAIM

;MAKE SURE SVCS ARE ON
;GET INFO ABQUT SYSTEM

;BRANCH JF ITS AN AIM

This program segment tests the version of CODOS and branches to ITSAIM (not shown)
if CCDOS is rumning on an AIM.

NOTES:

1.

Additional codes for new systems will be defined as necessary.

6-28

SVC #29 ($1D).

PURPOSE: To scan a device or file name/drive in preparation for ASSIGNment to a
channel, or tc ascertain a file's status.

ARGUMENTS:
Y = Index to start of file or device name in buffer
U5 = Pointer to input buffer
ARGUMENTS RETURNED:
Y = Tndex to first character after file name/drive or device name in buffer.

A

status information as described below.

flags: Cy set if parsed name was a device name; £Ly clear if parsed name was a
file name. The sign and overflow flag are set according to bits 7 and ©
respectively of the accumulator as described below.

U3 = Points to first character of file or device name in the buffer.

The status information returned depends on whether the device specified was a
file name (with or without drive specified) or a device name:

If the name was a device name (Cy szet) then:

RBit 7 is set to ! if the specified device does not exist.
Rits 6-0 contain the ASCII device name (1 character).

If the name was a file name [(Cy clear) then:

Bit 7 is set to 1 if an illegal name or drive number was specified.
3it 5 is set to 1 if the aspecified (or default) drive is not open.
Bit 5 is set to 1 if the file exists {(i.e., an old file).
Bit 4 is set te 1 if the drive is wrile-protected.
Bits 3 and 2 are not used,
Bits 1 and 0 contain the drive number selected.

DESCRIPTION:

SVC #29 i1s a mulbti-purpose SVC which performs the following activities:

1. It scans and validates an input string of characters specifying a file
or device name.

2. It returns status bits so that the application program can gracefully
recover from any common file/device specification errors without aborting the
program, and can determine what type of file/device was specified.

3. It helps setup the necessary registers for using SVC #21 (Assign).

SVC #29 is normally used to parse a character string which specifies the name
of a file or device which is to be assigned to a2 channel for I-0. SVC #29 scans
the string, determines if the name is a device name or a file name, and checks it
for legality.

If the name is a legal device name, it checks to see if the specified device
exists on the system. For example, a printer may or may not be present. The
device name iz returned in the A register so that the user may immediately wuse 3VC
#21 to assign the device if all is in order.

If the name 1is a file name, it 1is checked for legality. A&n optional drive
number may be specified as part of the name if the name iz terminated by =2 colon
followed by a digit. Blanks may be present befween the colon and the digit. 1If no
drive is given as part of the string, the default drive (usually drive 0) will be
assumed., If the file name (and optionally the drive number) are legal, then SVC
{#29 checks to see if the drive is open. If it 1is, then the disk is checked for
write protection. The directory is then searched for the file name. The status
bite of the A register return the results of these operations to the application
program. Upon completion of the SVC, the application program should verify that
the status bits returned in A reflect the desired conditions. If they do, the
bits of A except bits 0 and 1 should be masked off and 3VC #21 invoked to assign
the file. Note that 3SVC #2G automatically sets U3 to point to the file name.

noall

EXAMPLE:

Suppese that a program is to serve as a ugser-defined command, witi
argument to be the name of any device or file (opticnally with drive
is to be read for input to the program.

USRCOM .BYTE 0,12 ;SVC #12 = QUERY I-O BUFFERS AND COMD ARG PTR IN Y
.BYTE 0,29 ;PARSE THE ARGUMENT
BMI NOGOOD ;BRANCH IF ILLEGAL OR NON~EXISITANT DEVICE/FILE/DRV.
BCS ASGNIT ;BRANCH IF DEVICE SPECIFIED
BVS NOTOPN ;BRANCH IF DRIVE ISN'T OPEN
CMP #$20
BCC NOSUCH ;BRANCH IF NO SUCH FILE PRESENT
AND #3503 ;ELSE DISCARD ALL BUT DRIVE NUMBER
ASGNIT LDX #5 ;CHANNEL 5 TO BE USED

.BYTE 0,21 ;ASSIGN CHANNEL TO DEVICE OR FILE

This program segment first uses SVC #°2 to get the address of the system input
buffer and a pointer to the argument which is presumably a device or file name. It
then uses SVC #29 to parse the first argument encountered. The return arguments
from SVC #29 are checked to make sure the file or device exists and is ready o be
read. If everything is OK, then control passes to ASGNIT which assigns the file or
device name just scanned to channel 5 in preparation for reading. If there i35 a
problem with the syntax of the argument or the file/device name, branches are taken
to appropriate error handling routines within the program (not shown).

NOTES:

1. SVC #29 does not indicate whether a file is locked. The ASSIGN SVC (#21)
however does indicate the locked/unlocked status of a file when assignment of a
channel to a file i1s completed.

2. B3VC #29 is only available on MTU-130 versions of CODOS.

SVC #30 (3$1E).

PURPOSE: To obtain the current date.

ARGUMENTS:
Y = Index to desired start of nine ch;racter date field in buffer.
U6 = Pointer to desired output buffer,

ARGUMENTS RETURNED:
Y = Index to next available character after the date.

DESCRIPTION:

SVC #30 is used to obtain the current date, as entered during the normal CODOS
signon-procedure or by execution of the DATE command. The date field will be nine
characters long.

EXAMPLE:
SHODT .BYTE 0,12 ;SVC #12 GETS BUFFER POINTER INTC U6
.BYTE 0,2,6,'TODAY IS ',0 ;SVC #2 = QUTPUT MSG (ON CHANNEL 6}
LDY #0 ;SET INITIAL INDEX TO BEGIN OF BUFFER
.BYTE 0,30 ;GET 9 CHARACTER DATE
LDX #6 ;CHANNEL 6

.BYTE 0,6 ;QUTPUT LINE

This program segment outputs line with a message such as:
TODAY IS 24-JAN-82
assuming that the date previously entered was "24-JAN=82".
NOTES:
1, The default date field is "*UNDATED*"

2. 3VC #30 is available only on MTU-130 versions of CODOS.

6-31

CHAPTER 7.

16-BIT ARITHMET.C PSEUDC-PROCESSOR

This chapter describes the operation of the CODOS 16-bit Pseudo-Processor

("PP"), which is invoked by using SVC #27 (see Chapters 5 and & for general infor-
mation on SVCs).

GENERAL DESCRIPTION

The Pseudo-processor is a software simulation of a 16-bit Central Processing
Unit. The programmer can view it as an extension to the 6502 which provides 16
bit arithmetic and utility functions. The PP uses the Pseudo-registers U0 through
U7 in page 0 as its "registers", and uses the rest of wmemory as ordinary memory.
Executing an SVC #27 causes the PP to begin processing its instruction set begin-
ning with the next byte. It continues executing until a PP "UEXTY instruction is
encountered, abt which time normal 6502-processing resumes at the next byte. The
primary value of the Pseudo-Processor to the programmer is that it provides a very
compact and easy-to-use method of performing 16-bit arithmetic, including multi-
plication and division, and also provides a simple way of computing 24-bit file

positions for random access files.

PP REGISTERS

The PP has eight "Pseudo-registers", U0 through U7, as shown in figure 7-1.
These are the same P-registers used for SVC processing. The Paeudo-processcr uses
UQ as its i6-bit accumulator. It operates in a manner similar to the 6502's NA"
Tegister, but operates on 1b-bits instead of 8 bits of data. The P-registers Ul
through U6 are 16-bit general purpose registers which can be used to hold operands
for arithmetic operations or for holding addresses. In terms of the actual
location of the P-registers in memory, all P-registers have the least-significant
byte first and the most-significant byte at the next nigher adcress, in the sane

fashion as conventional 6502 addresses. P-register U7 is 24 Dbytes long. The
low-order 16 bits of U7 can be used Jjust iike any of the other gensral-purpcse
pseudo-registers U1 through Ub. The hign byte of U7 is only affected by one

special Instruction, specifically designed ror the computation of a 24-bit file
position, whicn is explained later.

INSTURCTION SET

The PP has a very simple instructions set, to facilitate hand-assembly, with
10 instructions in the set. Three of the inatructions are three bytes long; all
the rest are one byte instructions., The first byte is the operation code for the
instruction, and always contains two subfields: a 4 bit operation field and a
4-vit register number. Thus every opeode is easily defined as two hex digits
where the Tirst hex digit tells which of the 16 posaible operations is to be
performed, and the second hex digit tells which register is to be used. The
complete instruction set is defined in table 7-1. For example, a $13 instruction
tells the PP to add the contents of Paeudo-register U3 to the Pseudo-accumulator,
U0, and store the result in the Pseudo-accumulator. Notice that unlike the 6502
instruction set, arithmetic operations operate on UG and another register, rather
than the accumulator and memeory.

Actual
Address

P3EUDO-PROCESSOR REGISTERS

Pseudo-Register Name

$00B0

$00B2

$00BL

40086

$00B8

$00BA

$00BC

$00BE

1._ - .-|.- - --'

|
|

ACCUMULATOR REGISTER U0

REGISTER U1

.

REGISTER U2

REGISTER U3

e ._'... R

REGISTER Ul

|

i
i |
] i\ J

i
b

REGISTER US

1
H
i
‘
.

REGISTER U6

}

U U O N

i._ [RUREPRITY (S — -—1

NOTES FOR FIGURE 7-1:

REGISTER U7

Figure T7-1

1. Values should be deposited with the least significant byte first.

2. Register U7 is three bytes long, with the least significant byte firsi and
the most significant byte at the highest address.

TABLE 7-%: CODCS PSEUDO-PROCESSOR {PP) INSTRUCTIGN SET

Cperation
Code
$491 $L0 # Mnemonic Description
0 n 1 UEXT n Exit PP mode. Set the Z and N flags to reflect the value

in register Un, and return to normal 6502 executicn mode.
The Carry flag reflects the last UADD or USUB result.

1 n ' UADD n U0 = U0 + Un. 16~bit add. Carry flag t i ecarry
o¢eurs out of mest significant bit of resuly; otherwise,
carry is cleared.

2 n 1 USUB n» U2 = U0 - Un. 16-bit subtraect. Carry flag is cleared if
borrow occurred out of the most significant biv of
result; otherwise, carry is set.

3 n 1 UMIL n U0 = U0 * Un, 15-bit multiply. Carry not atfected. Low
*6 bits of product iz in UC, and the high-order 16 bits
is in Un.

L n 1 UDIV n Ue = U0 / in. 16-bit divide. Carry not affected.
quotient is in UQ, and remainder is in Urn. Aborts on

divide by 0.

5 n 1 UNUO n U0 = Un. 16-bit move, Un to U0. Un remains unchanged.

6 n 1 TOUN n Un = U0. 16-bit move, U0 to Un. U0 remairs unchanged.
7 n 1 USWP n U0 exchanged with Un. 16-bit exchange.

] n 3 ULDI n,val Un = val. 16-bi% load immediate. First byte of wval is

low-order byte, second is high-order byte.

n 3 ULDA n,addr Un = (addr). 16~bit lcad. The data at address addr is
placed in the low-order byte of Un and the data at addr+1
is placed in the high-order byte.

A n 1 UOLD n U0 = (Un). 16-bit load UQ register-indirect. The data

pointed to by register Un is loaded into the low byte of
J0, and the next byte is loaded into the high byte of UD.

B n 3 USTA rn,addr (addr) = Un. 16-bit store. The low byte of Un is stored
in memory at address addr, and the high byte is stored at
addr+1.

€ 1 UOST n (Un} = U0. 16-bit store U0 register-indirect. The low
byte of U0 is stored at the address in Un, and the high
byte is stored at the next higher address.

D n 1 UNUT n U7 = UC, Un. 24-bit move. Register UO is moved to the
low-order 16 bits of U7, and the low-order § bits of
register Un is moved to the most significant (3rd byte)
of U7. See note 3.

(¥}

3

E n 1 UJSR n Call subroutine at (Un). Execute 6502-subroutine whose
address is in register Un. See note 5.
3 n 1 UNOP n No operation. FHeserved for future extensions, treated as

no-cperation.

NOTATION USED: "n" = pseudo register number, 0 to 7, for U0 through U7 respective-
ly. M"Wal" is 16-bit value or address. addr is 16-bit address. "#" means number
of bytes in the instruction. "$HI" is high nybdble (4 bits) of opcode, and "$LO"
is low-order nybble.

-3

NOTES FOR TABLE 7-1:

1. The $0On (UEXT) instruction exits the Pseudo-processor and SVC #27. When
normal 6502 operation is resumed, the 6502 registers will be preserved in the
state they were in on executing SVC #27, except for the Carry (C), Negative (N)
and Zero (Z) flags in the processor status word. The Carry is returned in the
state which resulted from the last $1n (UADD) or $2n (USUB) operation. No other
PP operations affect the Carry. If no UADD or USUB was executed, the Carry will
be clear. The Z flag will be set if the register specified on the $0n (UBXT)
instruction was 0 (all 16 bits are 0); otherwise, the Z flag will be cleared. The
N flag will be set if bit 15 of the Pseudo-register specified on the &0n (UEXT)
instruction was 1; otherwise it will be cleared. This iz the sign bit for 16-bit
two's complement arithmetic. The remaining flags in the processor status word are
not affected.

2. All operations are performed in binary, regardless of the

setting of the
decimal mode flag when SVC #27 is executed.

3. The $En (UNU7) instruction is normally used immediately after $Un
cbtain the first 24 bits of a 32-bit product in U7. This san be used
compute the desired file position in a file of fixed-length records.

3.

4. The byte following the $0n (UEXT) instruction should contain the first byte of
normal 6502 code.

5. The $En (UJSR) instruction executes a user-defined 6502 machine-language
subroutine whose address is in pseudo register n. On entry to the subroutine,
register A will contain the low-order byte of U0, register X will con%ain the
index needed to address register Un relative to register U0 (e.g., 0 ifn= 0, 2
ifn=1, 8ifn=1U, etc.), and Y will be 0., The carry flag will reflect the
status of the last UADD or USUB operation; the N and 7% flags will reflect the
value of the low order byte of U0. The decimal mode flag will be clear. The
subroutine can destroy any registers but must return via an RTS with the stack
intact. The user subroutine may not use any SVCs.

6. Unlike the normal 6502 ADC and SBC instruetions, the setting of the
no effect on UADD or USUB,

carry has
T The Pseudo-processor resides in one of CODCS's system overlays. Normally,
therefore, the first time SVC #27 is executed in a program, CODOS will lcad the PP
from disk and execute it automatically. Although this loading is quite rapid
(typically a fraction of a second), it will be much longer than would be reqguired
if the PP was already loaded. If the PP is to be used in a time~critical portion
of the program, you may want to "preload" the PP by executing a dummy SVC #27
orior to the time-eritical portion of the code. CODOS will not reload the PP
overlay if it is already in memory.

8. Multiplication and division operations are unsigned.

EXAMPLES AND APPLICATIONS:

Assume the following 1lines of initialization and definitions preceed all
example =zolutions below:

SVCENB = $EE ;ADDRESS OF SVC ENABLE FLAG

$B80 ;16=-BIT ACCUMULATOR FQR PP
$B2 ; 16-BIT PSEUDO~REGISTERS...

[T TR TR 1]
4
o 5
=

0o
R
8]
]

$BE ;24 BIT ®E

&5
o
4

STER

LDA #5380
STA SVCENS ;ENABLE SVCS

Example 1: In preparation for using SVC #5 and SVC #6 for line-oriented I-0, setup
Pseudoc-registers U5 and U6 to point to two 80-character buffers starting at

MYBUFS.

DEFRUF BRK

JBYTE 27 ;SVC 27 {$18) = 3IT PSEUDC PROCESSOR

ITER 16-
.BYTE $85 ;ULDI 5, {LCAD U5 IMMEDIATE...)
JWORD MYBUFS ;MYBUFS (..WITH DESIRED INPUT BUFFER ADDR
JBYTE $8% JULDI 6, (LOAD U6 IMMEDIATE...)
.WORD MYBUFS+80 ;MYBUF3+80 (...WITH ADDRESS OF OUTPUT BUFFER)
LBYTE $90 {UEXT 0 (EXIT PP MODE}

Note that above method uses 9 bytes of code, compared with 16 using the equivalent
conventional 5502 code shown in the example for SVC #5 and SVC #6.

Example 2: Compute 0 times the 16-b1% value at $2000 through $2001 and store the
result at $2002 through $2003, If the result is 0, replace it with 1.
TENX BRK
.BYTE 27 ;SVC 27 ($1B) = ENTER 16-BIT PSEUDO-PROCESSOR
.BYTE 481 sULDT 1, (LOAD U1 IMMEIDATE...)
.WORD 10 ;10 {,..WITH 10)
.BYTE $90 ;ULDA 0, (LOAD UO ABSOLUTE...)
.WORD $2000 ;$2000 (., .WITH 16-BIT NUMBER AT ADDRESS $2000)
LBYTE $231 sUMUL 1 (MULTIPLY U0 = UQ * [11)
.BYTE $RBO ;USTA 0, (STORE U0...)
.WORD $2002 ;$2002 (...INTO ADDRESS $2002, $2003)
.BYTE 400 ;UEXT 0 (TEST UO AND EXIT PP #MODE)
BNE CONTIN ;BRANCH IF UC IS NOT O
LDA #1 ;ELSE REPLACE RESULT WITH 1

STA $2002
CONTIN .

This example illustrates how flags set by the PP may be used after the SVC #27.

7-5

Example 3: Channel 5 is assigned to a file containing fixed-length records of 325
bytes each. Given that the desired record number (0 through 999) is in U1, read
the selected record into a buffer at $2400.

RDREC BRK
BYTE 27 1SVC 27 ($1B) = ENTER 16~BIT PSEUDO-PROCESSOR.
.BYTE $80 sULDI O, (LOAD UQ IMMEDIATE...)
.WORD 325 ;325 (...WITH RECORD SIZE}
LBYTE $62 ;UOUN 2 (COPY RECORD SIZE TO U2 FOR SVC 15 LATER)

2
JBYTE 31 sUMUL 1 (MULTIPLY RECORD SIZE * RECORD NUMRER)
JBYTE $D° sUNU7 1 (SET 24 BITS OF U7 TO RESULT)

.BYTE $81 ;ULID 1 (LOAD Y1 IMMEDIATE...)

_WORD $2400 ;32400 (...WITH DESIRED BUFFER ADDRESS)
.BYTE 00 ;UEXT O (EXIT PP MODE)

LDX #5 :CHANNEL 5

BRK

.BYTE 19 ;SVC 19 ($13) = POSITION FILE.

BRK

BYTE 15 ;SVC 15 ($0F) = READ RECORD

This example 1llustrates how the PP can be used to setup for file po
files, even for files with greater than £5,535 bytes {the example file
bytes of data).

itioning in
has 325,000

T=6

CHAPTER 8.

KEYBOARD AND TEXT DISPLAY I/O DRIVER (IODRIVER.Z)

The Keyboard and Text Display I/0 Driver is a program that interfaces the key=-
board and display hardware of the MTU-130 computer with CODOS, language interpre-
ters, assembly language programs, and in fact any program that does not contain its
own keyboard and display driver routines. In the case of user-written assembly
language programs, most normal interaction with the keytoard and display may be
performed through the 3VC facility of CODOS. Please refer to sections 5 and & for
details on the functions available through SVCs. More sorhistiecated interaction
with these devices may be performed through direct calls to the Keyboard and Text
Display Driver as described in this section.

The keyboard and text display I/0 drivers are contained in the file IODRIVER.Z
which is normally loaded into memory by the START UP.J file. This driver pack
has a number of entry points, each of which performs a specific funectior.
table is provided for these entry points in the System Communications
memory. These entry point addresses are fixed and are not expected to
the 1ife of the MIU-130 product. The location and function of cach eniry
deseribed below.

THE KEYBOARD DRIVER

The MIU-130 computer uses a software- scammed keyboard for flexibility. The
keyboard input driver has five entry peints that make it eesy for a program to use
the keyboard and which essentially hide ite software-scanned nature. Three of
these entry points are used for inputting or testing ¥eys individually. The other
two entry points are used for inputting or editing entire lines of text. These
routines also update the display to reflect the information being entered. Timer
T1 of the S¥YS81 6522 I/0 chip is used by the keyboard driver to time the repeat
rate. The Y4 cursor direction Xeys, space bar, BACKSPACE, DELETE, and RUBOUT will
automatically repeat if held down. All other kXeys may be forced to repeat by pres-
ging the REPEAT key simultaneously with the character key. See appendix H for the
character code generated by each key. inllover and debouncing are handled fully by
the xeyboard driver.

Several parameters located in fixed locations in the System Communication area
influence the operation of the keyboard driver. 11 parameters are set to default
values when CODOS is "booted up" Hut the programmer may wish to change them.

PARAMETER LOCATION DESCRIPTION

QLN $00F0 Peinter to line-buffer used for INLINE and EDLINE
KBECHO $020F If bit T=1 then "echo" each key to the display.
NOCLIK $0213 If bit 7=1 then no click when a key is pressed.
DBCDLA $0220 Wait time in milliseconds allowed for contact bounce.
RPTRAT $0221 Intercharacter repeat delay in 256uS unita.

CURDLA $0222 Determines cursor blink speed, O=no blink.

CLKPER $0224 Click waveform period in units of 200 microseconds.
CLKVOL $0225 Click volume, $00 = minimum, $7F = maximum. |

CLKCY $0226 Click duration in units of complete waveform cycles.
YLNLIM $0238 Line size limit for INLINE and EDLINE entry points.
UKINLN 022A If bit T=1 then unrecognized keys are accepted for entry

points INLINE and EDLINE.

Bt

The keyboard driver entry points are described below. To use an entry point,
simply execute a J3R to the indicated address.
ENTRY POINT: GETKEY $0305
PURPOSE: To wait until a keyboard key is struck and return with character in A.
ARGUMENTS: None (see Chapter 10 for operational parameters)
ARGUMENTS RETURNED: A = Character code of key struck; X and Y preserved.
DESCRIPTION:

This entry point will wait indefinitely for a key to be pressed. While wait-

ing, a flashing text cursor will normally be displayed unless suppressed Dby
parameter setting.

BENTRY POINT: TSTKEY $030C
PURPOSE: To test if a Key is pressed; has multiple recognitiorn lockout.
ARGUMENTS: None

ARGUMENTS RETURNED: Carry is set if a key was down, clear if not. A = character
code of key seen down, if any. X and Y are preserved.

DESCRIPTION:

This entry point will scan the keyboard once looking for a key that is down.
1f one is found down that has not been previously recognized as down, its code is
loaded into A and the Carry flag is set. If no keys are found down, the Carry {lag
is cleared and A is loaded with an undefined value. The difference between this
entry point and the IFKEY entry point is that a key is recognized as down only
once until the operator releases it. This also applies to a kKey still down after
recognition by the GETKEY entry point.

ENTRY POINT: IFKEY $0360

PURPGSE: To test if a key is pressed without multiple recognition lockout.
ARGUMENTS: None

ARGUMENTS RETURNED: Carry is set if a key was down, clear if not. A = character
code of key seen down, if any. X and Y are preserved.

DESCRIPTION: This entry point will scan the keyboard once looking for a key that is
down. If one is found down, its code is loaded into A& and the Carry {lag is set.
If no keys are found down, the Carry flag is cleared and A is loaded with an
undefined value. The difference between this entry point and the TSTKEY entry

point 1is that a key may be repeatedly recognized as being down as long as the
operator holds it down.

ENTRY POINT: INLINE $031E

FURPOSE: To input an entire line from the keyboard, with editing permitted.

ARGUMENTS: None (see requirements for QLN below).

ARGUMENTS RETURNED: A = number of characters in the line, Y = 0, X preserved;
QLN points to the complted line.

DESCRIPTION:

This entry point accepts one line of text from the keyboard, and allows all the
line-editing functions permitted by CODOS. Editing functions include CTRL-B for
recalling prior lines, and automatic replacement of function keys with pre-defined
macro character strings. Please see Table 2-4 for a complete list of editing keys
available. In order to use this entry point, the calling routine MUST presat
location $00F0 to the desired input-line buffer location before calling the entry
noint. If you wish to use the normal CODOS line buffer, you should then set $COF0
to $00 and $00F1 to $05. Once called, the routine will not return until a complete
line has been entered, terminated by a carriage return., Function keys are automat-
ically expanded to the equivalent character string using the global function key
string table at address $0400, as deseribed for the CODOS ONKEY command.

Normally this routine will simply ignore any unrecognized control keys
as CTRL-D, for example) or
for example). Setting the

Lting ©

(such
unrecognized extended characters (such as the PF1 key,

UKINLY flag at $023A will instead allow such characters
Lo be returned in the line buffer. The "strange” characters will not be echoed to
the sereen, however.

The maximum number of characters which can be returned in the line is
determined by the value of YLNLIM (address $0238). The standard input buffer at

$0500 is large encugh for 191 (decimal) characters, and this is the default value
for YLNLIM.

ENTRY POINT: EDLINE $0321
PURPOSE: To edit an entire line using the keyboard.
ARGUMENTS:

Y=indexes the implied CR at the end of the line to be edited; QLN
{address $00F) points tec start of line to be edited.

ARGUMENTS RETURNED: A = number of characters in the line, Y = 0, X preserved;
CLN points to the completed line.

DESCRIPTION:

This entry point is similar te INLINE, above, except that the input line buffer
ig assumed to already hold a line tc be edited when the entry point is called. The
keyboard can be used to edit or accept the line. The full range of editing keys
accepted by CODOS are available. To use this entry point, copy the desired line

into the buffer, install the address of the buffer in QLN (address $00F0), set Y
to the character ccunt of the line, and call EDLINE.

8-3

THE TEXT DISPLAY DRIVER

The MTU-130 computer uses a bit-mapped dot matrix display format for extreme
Flexibility in text and graphics display. Thus software is responsible for drawing
the individual dots that make up character patterns when conventional text display
is required. The text display driver has numerous entry points that make it easy

for a program to display "normal text" and essentially hide the display's software
intensive nature,

The video display is organized as U480 horizontal dots by 256 wvertical dots.
Dot locations are defined by cartesian coordinates (X,Y) in the usual fashion whers
(0,0) is the lower left hand corner of the screen and (479,255) is the upper right.
Calls to both the text display driver and the graphies display driver (deseribed in
section 9) may be intermixed to provide the desired display.

Text is displayed in a text window which is always 80 characters wide. The

text window may be defined from 1 to 25 lines long, and defaults to 24. The top of

the text window is defined by the constant YTDOWN, measured in vertical dots down

from the top. YTDOWN may be defined from 0 to 245 and defaults tc 0. The current

position of the text cursor within the text window is kept in variables COL (1 to

80) and LINE (1 to 25-1C*YTDOWN). Please refer to section 9 if you wish %o place
h

characters in arbitrary X and Y locations on the screen which do not fall

into the
normal 24x80 "gridnv.

Characters are displayable horizontally only using a 5 wide by 7 high dot
matrix in a 6 by 10 cell of dots. Where required, lower case characters ar=s
layed with descenders which drop 2 Y positions below the baseline. Characters
¥y be underlined automatically under the control of a flag or may be underli
individually by overstriking the underline character. For special applications, a
separate user supplied font using the same cell size may be selected by setiing a

flag. The entire cell may be displayed in reverse video if desired, controlled by
a flag.

ed

The text cursor normally consists of a blinking reverse video block displayed
at the current cursor position. It is automatically blinked by the keyboard=input
routine while waiting for input. Therefore the cursor is normally only displayed
when the computer is ready to accept keyboard input. The cursor can be drawn at
will by explicit calls to a routine, and :an be totally disabled by setting a fiag.
The keyboard input routine normaily blinks the curser at a selectable rate which
defaults to about 2Hz.

The text display driver also controls display of the function key legends.
When displayed, they cccupy the bottommost 16 vertical dots for the full screen
width. The legends consist of two groups of 4 rectangular boxes each of which has
enough room to display an 8 character label. The text I/0 driver draws the boxes
and displays the labels, Asscclation of funection key depression with specific
functions can be done by the user program, or can uge automatic substitution of
character strings as is available in normal CODOS command entry.

Several parameters located in fixed locations in the System Communication area
influence the operation of the text display driver. A1)l parameters are set to
default values when IODRIVER.Z is executed. Some parameters, such as the current
cursor position, change during normal operation. You may also wish to alter or
examine certain of these parameters.

PARAMETER LOCATION DESCRIPTION

COL $0200 ° - Current column location of text cursor, 1 - 80.

LINE 30201 7.7 Current line number of text cursor, 1 - NLINET.

NLINET $021E Number of text linea in the text window.

YTDOWN $021F 255-(Y coordinate of top of the text window).

CURDLA $0222 Determines cursor blink speed, 0=no blink.

NOLFCR $0210 - If bit 7=1 then no automatic line feed after CR.

NOSCRL $0211 >+ If bit T7=1 then instead of serolling, the text window i=

cleared and the cursor is homed when text goes beyond the
bottom line.

UNDRLN $0212 If kit 7=1 then all characters underlined when drawn.

NOBELL $0214 - If bit T=1 then BEL character is ignored.

RVIDEC 40215 If bit 7=1 then characters are drawn in reverse video.

SHODEL $0216 If bit T=1 then displavy DEL {RUBOUT) as a character shape.

SHOUL $0217 If bit 7=1 then character cell is erased before the

underline character is drawn.

EXCCP $0218 If bit 7=71 then call user control character processor.

EXTHI $0219 If bit 7=t 1 user routine to process all characters

with bit 7 set.

EXFONT $0214 If bit T=1 then use external font table (see User Defined

Fonts at the end of this chapter).

BELPER $0227 Bell sound waveform period in units of 200 microseconds.

BELVOL $0228 Bell sound volume, %00 = minimum, $7F = maximum.

BELCY $0225 Bell sound duration in units of complete waveform cycles.

QEXCC $022F Address of external control character processor if used.

QEXFNT $0231 Address of external font table if used.

QEXHIY $0233 - Address of external processor for characters with bit 7=1.

EXFTBK $0237 Memory bank rumber containing external font table.

TABTBL $0BE0-O6FF Tab stop table. A tab stop is located at the column number
specified by =ach non-zero byte., See OQUTCH entry point for
details.

LEGTBL $05C0-05FF Function key legend table. Contains 8 groups of 8 char-

acters which are the displayed legends for the 8 function
keys. The label for the f1 key is first. See DRWLEG entry
point for details.

KEYSTR $0400-0UFF Function Key substitution string table. Contains 3 groups
of 32 characters which represent the the character
strings to be subsitituted for the associated function keys
when using the input-line or edit-line functions. See
INLINE entry point for details.

The following describes the entry points into the text display driver.

ENTRY POINT: OUTCH 40309

PURPOSE: To display a printable character or interpret a control character.
ARGUMENTS: Character to be displayed or interpreted in A.

ARGUMENTS RETURNED: None, A, X, and Y registers preserved,

DESCRIPTION:

This entry point is used for general text display. If the character is print-
able (i.2., not a control or extended character), it is displayed at the present
cursor position as defined by COL and LINE. The curscr is then moved one position
to the right {(COL incremented). If the cursor tries to go beyond the right end of
the present row (COL 80), it is returned to the left edge of the screen {COL=') anc
down one line (LINE incremented). If the cursor tries to go bayond the text window
bottom (LINE NLINET), then the entire text window scrclls upward instead. If
NOSCRL iz set, the text window would be cleared and the cursor placed i the upper
left corner (COL=1, LINE=1) instead. If RVIDEO is set, the character will be drawn
in black against a white background. If UNDRLN is sget, the c¢haracter will be
underlined as it is drawn. All printable characters except the wunderline first
erase the 6 by 10 character cell before being drawn.

If the character 1is an ASCII c¢ontrol character, action is according to th
following table:

@

CODE NAME ACTION

40D CR Carriage return, moves cursor to left screen edge (COL=1) and
also werforms LF function unless WOCRLF flag is set.

$0A LF Line feed, advances to next lower line without affecting column.
If already on bottom line (LINE=NLINET) then scrolls display up
one line unless NOSTRL flag is set. If NOSCRL is set then text
window is cleared and LINE is set to 1.

$08 BS Backspace, move cursor left 1 character without erasing the char-
acter.

$09 HT Tab, move COL to next tab stop in tab table. If beyond last
valid tab stop, no action.

$18 caN M Cancel, clear current display 1line, set COL to 1. Does not
change LINE,

A

$07 BEL & Bell, sound audio tone unless NOTONE is set.

$0C FF L Form feed, clear text window, home the cursor to the upper left
corner (sets COL=1 and LINE=1).

8TF RUBOUT Rubout, performs equivalent to Backsapace, Space, Backspace unless

(DEL) SHODEL flag is set in which case it displays a checkerboard char-

acter shape.

If the character is an extended character (bit 7=z1, presumably from cne of the
special keys on the keyboard), action is according to the following table:

CODE NAME

$A0

3A1

$A2

$A3

$Al HOME

$84 X

$3n /

&L SHIFT/HOME

ACTION

Cursor up, move cursor up one line unless already at top of text
window (LINE=1).

Cursor left, translate %o BS and process as a BS character ($08).

Cursor right, move cursor right one without erasing unless
already at right edge of screen (COL=80).

Cursor down, translate to LF and process as a LF character {$C0A).

Cursor home, move cursor to left screen edge at top of text
window (COL=1, LINE=1).

Multiply, print ¥ symbol on screen.
Divide, print / symbol on screen.
Subtract, print - symbel on screen.

Add, print + symbol on screen.

Translate to CR and process as a CR character ($0D).

Shifted HOME, translate to FF and process as a FF character($0C).

If the EXTHI flag is set, a user supplied external subroutine is called ¢to handle
extended characters instead.

ENTRY POINT: CLRDSP $0312

PURPOSE: To clear the entire U480 by 256 screen.

ARGUMENTS: None.

ARGUMENTS RETURNED: None, A, X, and Y registers preserved.

DESCRIPTION:

This entry point is used to clear the entire screen including the legend boxes. If

you want to clear

only the text window, use the CLRHTW entry point, or use the

QUTCHR entry point with an argument of $0C (form feed).

ENTRY POINT: DRWLEG $0315
PURPOSE: To draw the function key legend boxes and their labels.
ARGUMENTS: The 64 bytes of legend labels from $05C0 - $05FF,
ARGUMENTS RETURNED: None, registers not preserved.
DESCRIPTION:
This entry point erases the existing legend area (bottom 16 scan lines of the
display area) and draws 8 legend boxes each containing an 8-character function key

legend. The boxes and legends are displayed in two groups of 4 like *the function

keys on the MTU~130 keyboard. The legends to be used are ASCII strings of exactly
& c¢haracters each, which must be predefined in the legend table ($5C0-35FF). YNon-

$51
displayable characters (control or characters with bit 7 set) are treated as if
they were blanks. The characters are drawn in normal mode (no uncerlining or

reverse video). If an external font table is specified (EXFONT flag set), ther
iz used to draw the legend characters. The position of the text curscr (COL,
is not affected.

ENTRY POINT: INITIO $030F

PURPOSE: To clear the screen and set default values of display paranmeters.
ARGUMENTS: None.

ARGUMENTS RETURNED: None, registers not preserved.

DESCRIPTION:

This routine completely re-initializes the text display driver and is useful if
its previous state is unknown. It performs the following functions:

1. Clears entire U480 by 256 screen area.

2. Clears all function key legends .o blanks.

3, Clears function key subatitution strings to the null string (38C).
4. Draws the function key legend boxes.

5. Sets text window to 24 lines starting at toé of the screen.

6. Text cursor is placed in the home position {COL=1, LINE=1)

7. All text driver flags (NOLFCR, NOSCRL, UNDRLN, etc.) are cleared.
8. The keyboard driver is initialized.

9. The audio DAC is initialized.

ENTRY POINT: INITTW $0363

PURPOSE: To initialize the text window to 24 lines and clear the text window only.
ARGUMENTS: None

ARGUMENTS RETURNED: Registers are 222 preserved.

DESCRIFTION:

This routine re-initializes the text display driver. If performs the following
functions:

1. Sets text window to 24 lines starting at top of the screen.
2. Text curscor 1s placed in the home position (COL=1, LINE=1)
3. All text driver flags (NOLFCR, NOSCRL, UNDRLN, ete.) are cleared.

4, The audio DAC is initialized.

ENTRY POINT: DEFTW $0366
PURPOSE: To set the position and size of the text window.

ARGUMENTS: A = desired number of text lines, 1 - 24,
Y = position of top of window {number of scan lines down from top).

ARCUMENTS RETURNED: None, only X register is preserved.
DESCRIPTION:

Thia routine defines the size and position of the text window. The requested
number of text lines must fit between the specified top pesition and the bottom of
the screen (255) at the rate of 10 scan lines per character line.

ENTRY POINT: CLRHTW $0369 773
PURPOSE: To clear the text window and home the cursor.

ARGUMENTS: Necne

ARGUMENTS RETURNED: Ncne, all registers preserved,

ENTRY POINT: HOMETW $036C
PURPOSE: To place the cursor in the home position (COLz1, LINE=1)
ARGUMENTS: Ncne

ARGUMENTS RETURNED: None, all registers preserved.

ENTRY POINT: CRLF $036F
PURPOSE: To move cursor to the left screen edge and down one line.
ARGUMENTS: None
ARGUMENTS RETURNED: None, all registers preserved.
DESCRIPTION:
\This routine performs the same as the OUTCH entry point with an argument of $4D
(CR).
ENTRY POINT: CLRTW $0372 ¥%.2
PURPOSE: To clear the text window without moving the cursor.
ARGUMENTS: None

ARGUMENTS RETURNED: None, all registers preserved.

ENTRY POINT: CLRLEG $0375 /53’5‘)
PURPOSE: To clear the legend display area (bottommost 16 scan lines).
ARGUMENTS: None

ARCUMENTS RETURNED: ©None, only X and Y are preserved.

ENTRY POINT: CLRTLN $0378
PURPOSE: To clear a specified text line.
ARGUMENTS: A = line number to be cleared, 1< = A<= NLINET

ARGUMENTS RETURNED: None, only Y is presgerved.

ENTRY POINT: LINEFD $037B

PURPOSE: To move the cursor down one text line.
ARGUMENTS: None.

ARGUMENTS RETURNED: ©None, only X and Y are preserved.
DESCRIPTION:

This routine performs the same as the QUTCH entry point with an argument of $0A
(LF).

8-10

ENTRY POINT: OFFTCR $037E
PURPOSE: To turn the text cursor off if it is on.
ARGUMENTS: None.

ARGUMENTS RETURNED: None, all registers are preserved,

ENTRY POINT: ONTCR 30381
PURPOSE: To turn the text cursor on.
ARGUMENTS: None.

ARGUMENTS RETURNED: None, all registers are preserved.

ENTRY POINT: FLPTCR $0384
PURPOSE: To flip the video sense of the cursor at the cursor position.

ARGUMENTS: COL = column number of character to be flipped.
LINE = line number of character to be flipped.

ARGUMENTS RETURNED: ©None, all registers are preserved.

ENTRY POINT: BEEP $038D brog J
PURPOSE: To scund an audible beep.

ARGUMENTS: volume in range of $00 (silence) to $7F (maximum), $40 is normal.

duration in complete waveform cycles, 1-255, 0=256.

A
X
Y = Waveform period in units of 200 microseconds.

Wt

ARGUMENTS RETURNED: VNone, all registers are preserved.

8-11

USER DEFINED FONTS

The Text Display I/0 Driver has provisions for use of an
character font. To use an external font table, first store the address of the
external table in location 30231 (low) and $0232 (high). Install the bank nuaber
containing the font table intoc location $0237 (default is 0). Then to enable the
external table, set bit 7 of the EXFONT rlag at looation $0214 to a ona. Following
these actions, all characters subsequently drawn on the screen will refer Lo the
external font table until the EXFONT flag 13 cleared. You may switch Dback and
forth between the normal and alternate font by merely toggling bit 7 of EXFONT.

external user-defined

The text display driver uses a basic cell structure of 7 rows of 5 dota for a
character. The font table therefore consists of 7 bytes for each character where
the leftmost 5 bits of each byte represent the 5 dots for that row. For exanple,
the font table entry for a letter "A" would be as follows:

Byte 0 001 0004# % $20
. 010170000 $50 * This bit {s the desnender
10001000 88 flag, see text.
11111000 gre
TC001000 388 # This bit is the "J dotn
v 10001000 382 flag, =ee tex:,
Byte 6 100017000 $33
The first 7 byte table entry corresponds %o the ASCII code $20, the next T bytes %o
$21, eto. up to 3TF.

er ig drawn 20 that the beo

t ttommost dot row rests on th
If the descende bit is on (see * no
t

C
®

r te above}, the entire 5 by T

shifted twe dot rows downward as it is drawn. This is normally used when

dr lewer case characters such as j,g,y,p and 3. For descended characters
re
re

quiring a dot outside the 5X7 matrix area (such as the lower
flag bit should be a one. This will cause a
above the top row of the descended character.

case j) the "J dot"
centered det to be placed two rows

EXTERNAL HANDLING OF ASCIT CONTROL CHARACTERS

- N LT

The Text Display I/0 Driver has provision for external handling of the ASCII
control characters, i.e., those between $00 and $'F inclusive. To use an external
control character processor, first place its address n location $022F (low, and
$0230 (high). Then to enable the external processor, set bit 7 of the EXCCP flag
at location $0218 to a one. Feollowing these actions, all eontrel characters
received by the OUTCH entry point will be passed to the external routine
EXCCP flag is cleared. You may switeh back and forth between noraml
handling of contrel characters by merely toggling bit 7 of EXCCP.

un the
and zpecial
L]

The external routine is entered with the ASCII control character code in the A
reglster, and ¥ and Y undefined. The external routine m 3ave and restore any
register it uses, and may also make balanced use of the ck. Any of the entry
point

described earlier except OUTCH may ™Me called by th
bal

2 external routine. The
P s s TN o Y -
outine must exit by using an RTS instruetion.

o0
1
n

EXTERNAL HANDLING OF EXTENDED CHARACTERS

The Text Display I/0 Driver has provision for external handling of the extended
characters, l.e., those that have bit 7 set. To use an external extended character
processor, first place its address in location $0233 (low) and $0234 (high). Then
to enable the external processor, set bit 7 of the EXTHI flag at location $0219 to
a one. Following these actions, all extended characters received by the QUTCH
entry point will be passed to the external routine until the EXTHI flag is cleared.

The external routine 1is entered with the extended character code in the A
register, and X and Y undefined. The external routine must save and restore any
register it uses, and may also make balanced use of the stack. Any of the entry
points described earlier except QUTCH may be called by the external routine. The
external routine must exit by using an RTS instruction.

CHAPTER 9.

GRAPHICS DISPLAY I/0 DRIVER (GRAPHDRIVER.Z)

The Graphics Display I/0 Driver is a program that interfaces the display
generator, light pen, and keyboard of the MTU-130 computer with assembly language
programs and language interpreters that need to utilize the graphics capabilities
of these devices. The graphics functions provided are as follows:

1. Plotting points and vectors given cartesian X and Y coordinates.

2. Drawing text characters at arbitrary X and Y locations.

3. User input of position information using a graphic cursor and the keyboard.
4. User input of position information using the light pen.

The Graphics Display I/0 Driver (file GRAPHDRIVER.Z) has a number of entry
points which may be called to perform various functions. A jump table for these
entry points 1is provided in the system communications area of memory, and is not
expected to change. The Graphics driver software alsc requires the presence of the
standard text I1-0 driver software (file IODRIVER.Z). Both these files are noramlly
loaded by the STARTUP.J file. In order for the graphics drivers to work, the
GRAPHDRIVER.Z file must be loaded AFTER the IODRIVER.Z file has been loaded and
initialized {(by executing it).

GRAPHICS PARAMETERS

The MTU~130 display screen 1s actually just a very large matrix of dots, each
of which may be on (a tiny spot of light) or off. Each of the 122,880 dots is
independent of the others which means that any kind of image can be constructed
with the proper software. The dot array consists of 256 rows of dots with 480 dots

in each row. The location of any dot can be specified by giving its X and Y
coordinates as illustrated below:

Y=255

Y=0

X=0 X=479

X defines the column number and can range between 0 and 479. Y defines the row
number and can range between 0 and 255. Both coordinates are considered to be two
byte quantities even though only X really requires two bytes. The Lleast signif-
icant byte of coordinates is always first, like 6502 memory addresses.

Arguments to the graphics routines are generally stored in dedicated locations
in memery. These locations are described below:

PARAMETER LOCATION DESCRIPTION

Xc $0202 * X coordinate of the graphic cursor position, 2 bytes.

YC $0204 '« Y coordinate of the graphic cursor position, 2 bytes.

XX $0206 7 X graphic coordinate "register™, 2 bytes.

Y $0208 - Y graphic coordinate "register", 2 bytes.

GMODE $0204 Graphic drawing mode, $00=move, $40zerase, $80=draw,
$CO=f1ip. Add $20 for dashed lines.

DSHPAT $020B Recirculating dashed line pattern, each 1 bit=dot on, 2
bytes.,

NOTE: On all entry points, automatic bounds checking is performed as follows. If
XC or XX is negative, it is set to O or if greater than #79 it is set to 479. If
YC or YY is negative, it is set to 0 or if greater than 255 it is set to 255. For
relative coordinates, the sum of the cursor and displacement coordinates is correc-
ted as above.

ENTRY POINTS FOR GRAPHIC DISPLAY DRAWING

The following entry points are used for drawing points, lines, and characters
on the MIU-130 display. Calls to these entry points may be intermixed with calls
to the Text Display Driver described in section 8.

ENTRY POINT: SDRAW $0324
PURPOSE: To draw a solid vector from the cursor to (XX,YY).

ARGUMENTS: XC,Y¥C = coordinates of initial endpoint.
XX,YY = coordinates of final endpoint.

ARGUMENTS RETURNED: XC,YC are set to the coordinates of the final endpoint.
GMODE is set to $80.
A, X, and Y are preserved.

DESCRIPTION:
SDRAW unceonditionally draws a solid white line between specified endpcints. The

setting of GMODE and DSHPAT have no effect on the 1line drawn. When drawing is

complete, XC and YC will be set to the final endpoint coordinate in preparation for
another vector connected to the vector just drawn.

ENTRY POINT: SMOVE $0327
PURPOSE: To move the graphic cursor to (XX,YY) without drawing.
ARGUMENTS: XX,YY = coordinates of point to move to.

ARGUMENTS RETURNED: XC,YC contain a copy of XX,YY.
A, X, and Y are preserved.

9-2

ENTRY POINT: SVEC $0330

PURPOSE: To draw a vector from the cursor to (XX,YY) according to GMODE and DSHPAT
ARGUMENTS: XC,XYC cogordinates of initial endpoint.

XX, 1Y coordinates of final endpoint.

GMODE = Type of line to be drawn.

DSHPAT = Dashing pattern if GMODE specifies a dashed line.

now o

ARCUMENTS RETURNED: XC,YC are set to the coordinates of the final endpoint.
8, X, and Y are preserved.

DESCRIPTION:

SYEC draws a line starting at XC,¥YC and ending at XX,YY. When drawing is complete,
AC and ¥C will be set to the firal endpoint coordinate in preparation for another
vector connected to the vector just drawn. The appearance of the line drawn
lapends on the setting of GMODE according to the table below:

GMODE LINE TYPE

$00 Move

$40 Erase (draw black line)

$80 Draw (draw white line)

$CO Flip (flip pixel state along line)
$60 Erase dashed

$A0 Draw dashed

$E0 Flip dashed

The DSHPAT parameter can be considered tc be a 16 bit loop-around shift register.
The register is rotated left one position for every pixel plotted when GMODE calls
for a dashed line. If the bit lcoped around DSHPAT is a 1, then the pixel is
“dprawn" according to GMODE. If the bit looped around is a 0, then the pixel is
skipped. DSHPAT is not reset by any entry point; it just recirculates whenever a
dashed line is drawn. The default contents of DSHPAT are $FOF0 which gives dashes
4 cdots long separated by 4 dots of blank space.

ENTRY POINT: SDOT $0336

-

URPOSE: To draw a single dot (pixel) at (XX,YY) according to GMODE.

ARGUMENTS: XX,YY = coordinates of dot to draw.
GMODE = Type of dot to bhe drawn.

ARCUMENTS RETURNED: XC,YC are set to the coordinates of the dot.
A, X, and Y are preserved.

DESCRIPTION:

SDOT plots a single dot at (XX,YY) according to GMODE. After the dot is plotted,

XX,¥Y will be copied into XC,YC. The appearance of the dot depends on the setting
of GMODE according to the table below:

GMODE DOT TYPE

%00 Move {no display change)

£] Erase (draw black dot)

$80 Draw (draw white dot)

$C0 Flip (flip dot from white to black or black to white)

9-3

ENTRY POINT: SDRAWR $032A
PURPQSE: To draw a solid white vector relative to the cursor,
ARGUMENTS: XC

X
Y

YC = coordinates of initial endpoint of the vector.
Signed X displacement of final endpoint from XC (=128 to +127).
Signed Y displacement of final endpoint from YC (-128 to +127).

o

ARGUMENTS RETURNED: C,¥C and XX,YY are set to the absolute coordinates of the
final endpoint.
A, X, and Y are preserved,

DESCRIPTION:

SDRAWR is similar to SDRAW except that the final endpoint coordinates are deter-
mined differently. The line drawn starts at XC,YC and ends at XC+X,YC+Y where X
and Y are the contents of the X and Y machine registers., After drawing, both XC,¥C
and XX,YY are updated to the coordinates of the final endpoint in preparation for
another line.

ENTRY PCINT: SMOVER $032D
PURPOSE: To move the graphic cursor relative to its present position.

ARGUMENTS: XC,YC = coordinates of initial position graphic cursor.
X = Signed X displacement of final position from initial positon.
Y = Signed Y displacement of final position from initial position

ARGUMENTS RETURNED: XC,YC and XX,YY are set to the absolute ccordinates of the
final pesition.
A, X, and Y are preserved.

DESCRIPTION:

SMOVER is similar to SMOVE except that the final position coordinates are deter-
mined differently. The new cursor position 1is XC+X,YC+Y where XC,YC is the old
position and X and Y are the contenits of the X and Y machine registers. After
moving, both XC,¥C and XX,YY are updated to the new position.

ENTRY POINT: SVECR $0333

PURPGSE: To draw a vector relative to the cursor according to GMODE and DSHPAT.

ARGUMENTS: XC,YC = coordinates of initial endpoint of the vector.
X = Signed X displacement of final endpoint from XC.
Y = Signed Y displacement of final endpoint from YC.
GMODE = Type of line to be drawn.
DSHPAT = Dashing pattern if GMODE specifies a dashed line.

ARGUMENTS RETURNED: XC,¥YC and XX,YY are set to the absolute coordinates of the
final endpoint.

A, X, and Y are preserved.

DESCRIPTION:

SVECPR is similar to SVEC except that the endpoint coordinates are computed as in
SDRA /R. See SVEC and SDRAWR descriptions for details.

9-4

ENTRY POINT: SDOTR $0339

PURPQSE: To draw a single dot (pixel) at a position relative to the cursor
according to GMODE.

ARCUMENTS: XC,¥YC = Present cursor positien.
X = Offset of point from curscr position in X direction.

Y = Offset of point from cursor position in Y direction.
GMODE = Type of point to be drawn.

ARGUMENTS RETURNED: XC,YC and XX,YY are set to the coordinates of the dot.
A, X, and Y are preserved.

DESCRIPTION:

SDOTR is similar tc SDOT except that the coordinates of the dot are determined
differently. The dot coordinates are XC+X,YC+Y where XC,YC is the cursor position
and ¥ and Y are the contents of the X and Y machine registers. After plotting the
point, both XC,¥C and XX,YY are updated to its position. See SDOT diseription for
more information.

ENTRY POINT: SDRWCH $0345
PURPOSE: To draw a single character at (XX,YY).

ARGUMENTS: XX,Y

,YY = Coordinates of lower left corner of 6 by 10 character matrix.
A = ASCII

character code in range of $20 - $7F.

ARGUMENTS RETURNED: XC,YC positicn of character just drawn {copy of XX YY)
XX,YY position of next character to draw (XX=XX+6, YY=YY).
A, %X, and Y are preserved.

DESCRIPTION:
SDRWCH may be used to draw characters at any arbitrary location on the screen. The

character cell used is & dots wide by 10 dots high into which a character 5 dots
wide by 7 dots high is written as iliustrated below:

o 20 s . 0000 . . « B ¢ =
.0 . 0. . 0. = 5, 0 & & o
O ..0.0...0..000,.0.00..
0...0.0000..0. .0 .00 . 0.
Q0000 . 0. .0 . 0. .0 .0, 0.
g...0.0. .0 . 0. 00 .0. .0 .
0...0.0000 By .. 0. . 0.
Character T L 1 I S R R 2 | B 3
coordinates s ox ow ok ow o s owow ow s o w B0 o oo o .

The character's coordinates refer to the lower left corner of the 6 by 10 cell.
The character's baseline is normally 2 dot rows above the bottom of the cell but
lower case characters with descenders (g, j,p,q,y) will extend down to the bottom of
the cell. The entire 6 by 10 character cell is cleared before the character is
drawn so it may be desirable to draw characters first and then any graphies that
might overlap portions of the cell. After the character is drawn, XX is incremen-
ted by © in preparation for another character. Thus labels for charts and graphs
may be drawn easily by repeated calls to SDRWCH. The %X value must be between 0
and Y74 inclusive and the YY value must be between 0 and 247 inclusive. If either
is out of range, the character will not be drawn at all. Only printable ASCII
character codes ($20-$7F) may be drawn, all other codes will not be drawn.

ENTRY POINT: SISDOT $0348
PURPOSE: To determine whether pixel at (XX,YY) is on or off.
ARGUMENTS: XX,YY = Position of pixel to test.
ARGUMENTS RETURNED: A=0 if pixel is off, nonzero if on.
XC,YC set equal to XX,YY
X and Y are preserved.
ENTRY POINT: SONGC $034E
PURPOSE: To turn on the graphic crosshair cursor,
ARGUMENTS: XC,Y¥C = Position of graphic cursor.
ARGUMENTS RETURNED: None, A, X, and Y are preserved.
DESCRIPTION:
The graphic crosshair cursor consists of a full screen height vertical line drawn
at the horizontal position specified by XC and a full screen width horizontal line
drawn at the vertical position specified by ¥C. The crosshair cursor is drawn in
flip mode which means that parts of an .mage it covers will be restored when it is
later turnsd off with the SOFFCC entry point. lip mode also means that the cursor
will show up regardless of the background color of the screen.
ENTRY POINT: SOFFGC $034B
PURPOSE: To turn off the graphic crosshair cursor.
ARGUMENTS: XC,YC = Position of graphie cursor.
ARGUMENTS RETURNED: None, A, X, and Y are preserved.

DESCRIPTION:

This entry point turns the graphic cursor off that had been previously turned on by

the SONGC entry point. For proper operation, the value of XC and YC must be the
same as they were when the cursor was turned on.

ENTRY PCINTS FOR USER COORDINATE INPUT

The folloWing entry points are used for convenient operator input of position
data using either the light pen or the keyboard. The light pen is best for point-
ing out objects that already exist on the sereen or for very rapid coordinate
input, i.e., drawing directly on the screen. The keyboard is best for very precise
{to the pixel) location of coordinates where speed of input is less important.

ENTRY PQINT: SGRIN $033C

PURPOSE: To allow user coordinate input by maneuvering a cursor with the keyboard
cursor control keys.

ARGUMENTS: XC,YC = Initial positien of graphic cursor.

ARGUMENTS RETURNED: XX,YY = user selected position of cursor.
A = ASCII code of key pressed to terminate the input.
XC, YC, X and Y are preserved.

DESCRIPTION:

This routine activates a rapidly blinking full-screen crosshair cursor which can be
maneuvered using the cursor ¥Xeys on the keyboard. It remains aective until a non-
cursor key is gtruck. It then returns the coordinates and ASCII code. The shifted
cursor control keys move the cursor 5 times as fast as the unshifted curser keys.
HOME is no%t considered a curser key by SCGRIN.

ENTRY POINT: SLTPEN $033F
PURPUSE: Activate light pen for one frame and return coordinates of hit, if any.
ARGUMENTS: None.

ARCUMENTS RETURNED: Cy set if pen saw light, cleared if not.
XX,YY = Coordinates of hit, if any.
XX, YY¥, X and Y ar:c preserved only if no hit.

DESCRIPTION:

This entry point first waits for the end of the current screen scan and then
begins checking for a light pen "hit"™ (response to light from the sereen). If
light is seen during the next screen scan, the X and Y coordinates of the beam
position when the hit occurred are placed in XX,YY and the carry flag is turned on.
1f no light is seen during the scan, the carry flag is turned off. The maximum
amount of time spent in this routine is 33 milliseconds when no light is detected.
The time varies from less than 1 to a maximum of 32 milliseconds when light is
detected. The X and Y coordinates returned have resolution to the pixel level but
a2 random variation up to + or - 2 coordinate units can be expected.

9-7

Light pens of course can only respond to areas of the screen that emit light.
For this the light pen is well suited for quickly selecting one object from a group
on the screen merely by pointing at it. Two methods may be used for "drawing®
lines and curves on a blank screen. One is to display a "tracking" pattern such as
a solid square 5 to 7 pixels high and wide. If the point coordinates returned by
SLTPEN are not the center of the tracking pattern, it is erased and redrawn
centered around the new coordinates. By doing this in a loop, the pattern will
appear to "follow" the pen's movement and the program can save successive positions
of the pattern. The other method is te simply fill a portion or all of the screen
with white and then store the series of coordinates generated by repeated calls of
SLTPEN. The points could even be plotted in black as they are generated with
little effect of the pen's operation.

TMPORTANT NOTE:
The light pen will generally not respond to features less than 2 pixels wide

horizontally. Thus single dots and vertical lines that are only one pixel wide
will be invisible to the pen unless the screen brightness is very high.

ENTRY POINT: SINTLP 30351
PURPOSE: Wait for end of frame and then activate the light pen.

ARGUMENT3: None.

ARGUMENTS RETURNED: None, X and ¥ are preserved.

ENTRY POINT: STSTLP $0354%
PURPOSE: Test for light pen hit and return coordinates if a hit.

ARGUMENTS: None.

ARGUMENTS RETURNED: Cy set if pen saw light previously, cleared if not.
XX,YY = Coordinates of hit, if any.
XX, YY, X and Y arc preserved only if no hit.

DESCRIPTION:

STSLP makes an immediate test of the 1light pen "hit" status and then quickly
returns. Any amount of time may elapse between a light pen hit and when ST3TLP is
called to compute the X and Y coordinates of the hit.

CHAPTER 10,

SYSTEM CUSTOMIZATION

System customization (often called "system generation"™) is the procedure for
"eustomizing" CODOS to a particular machine configuration and set of operator
preferences. Since the MIU-130 may be equipped with from 1 to 4 disk drives and
any of a variety of printers (or no printer at all) and other 1/0 devices, provi-
sion has been made for accommodating alterations with a minimum of difficulty. The
Setup and Installation manual tells how to get your system going the first time.
This chapter tells how to avoid unecessary preamble when starting-up your system.
Once "Customized", the modifications become a permanent part of the system on disk.
When the system is booted-up, the operating system will be immediately ready to
respond to your needs. The MTU-130 is equipped with a number of utility programs
and built-in capabilities for self-modification, which are described briefly below
and in more detail later in this section.

First-time Power-up Procedures

The first-time-power-up procedures are discussed in the Setup and Installation
manual which is the Ffirst manual in the MTU-130 system notsbook. In particular,
the startup procedures establish, on a temporary basis, the number of disk drives
in the system. This attribute is only patched intc memory, however, and will be
lost as soon as power 1s removed from the system. Therefore two interactive Utili-
ty programs are provided to permanently update the operating system on disk.

System Generation Utility Programs

The SYSGENDISK Utility program is provided to adjust CODOS for the number of
disks in your system, and to "fine tune" the gystem to get the most ocut of your
particular disk drives. You should run SYSGENDISK after you have copied the Dis-
tribution diskette to your first working diskette. Normally, you will only run
this Utility program once, unless you change the number or type of disk drives in
your system. SYSGENDISK is described in detail later in this section.

The SYSGENDEVICE Utility program i3 provided to add new Input-Output devices to
CODOS. Once you have defined a new I-0 device, you can assign channels to it and
perform any input or output desired. You will want to run this Utility program
whenever you add a new peripheral I-7 Jevice such as a printer to your system.
SYSGENDEVICE is described in detail later in this section.

The SYSGENPRINTR Utility program is provided to automatically generate 2
machine language printer driver routine for almost any kind of printer which you
might want to use on the MTU-130. It is a conversational program which asks you
questions about your printer and then writes a machine language program which you
may use immediately. SYSGENPRINTR is described in detail later in this section.

STARTUP.J File

Another feature of CODOS which greatly facilitates customization is the
STARTUP.J file. When CODOS is booted-up, it first loads the operating system into
memory. It then will read a list of CODOS Monitor commands from a file called
STARTUP.J, and execute them just as though they were typed by you at the Console.
Therefore if you have any special needs for your system, they can be attended to
without operator intervention at this time. For example, if you need to load your
various device-drivers intc memory or wish to modify the keyboard repeat speed, you
can let the STARTUP.J file do this for you. More information on modifying the
STARTUP.d file is provided later in this section.

CUSTOMIZING DISK ATTRIBUTES WITH THE SYSGENDISK UTILITY PROGRAM

The version of CODOS shipped with the MIU-130 computer is set up to be usable

on the broadest possible range of MIU-130 hardware cenfigurations. This means
however that as received, CODOS is unlikely to be optimized for your particular
hardware configuration and desires. The SYSGENDISK utility is provided to allow

you to easily optimize CODOS. Note that 1in all cases except one, running SYSGEN-
DISK is optional; if the default parameters are acceptable, it nesd not be run.
The one exception is systems that have only one disk drive. If you don't run
SYSGENDISK to customize CODCS for single drive operation, you will have to make the
first-time- power-up patch desceribed in the Setup and Installation manual every
time you turn the system on. *

SYSGENDISK allows you to modify the following disk system parameters {values in
parentheses are the default values on the Distribution disk):

1. The number of disk drives in the system (2)

2. The number of disk buffers in the system (6}

3. The disk drive track-to-track step time (8 milliseconds)
4, The disk drive head load time (50 milliseconds)

The meaning and selection of each of these parameter values is described in the
following sections, followed by a description of SYSGENDISK cperation.
P

Number of Disk Drives

CODOS needs to know how many disk drives are available in the system. In par-
ticular, it needs to know whether there is just one drive or more than one so that
the proper copy routine is used by the FORMAT utility. The OPEN command also needs
to know the number of drives so that it can properly flag as an error any attempt
to open a non-existant disk drive. For specialized applications, you can specify
fewer drives than are actually present. Note however that there is a very substan-
tial advantage in having at least two drives available because copy and backup
operations are much more automatic. CODOS on the Distribution disk is set up for
two disk drives. Up to four drives arec permitted.

Number of Disk Buffers

In order to do disk operations, CODOS requires a number of disk buffers. Each
disk buffer is a 256 byte region of memory. These are always embedded in system
memory above $C000 and so do not directly tie up any user memory below $C000.
Every disk drive above two requires a buffer to hold the block allocation map for
that drive. Every file that is assigned to a channel also needs a buffer. There
is enough room in system memory for a maximum of & disk buffers. The default is 6
buffers. This leaves 2 buffers (512 bytes) unused during normal CODOS operations.
These two buffers are used, however, by certain utility programs such as DISKETTE
and BACKUP, Therefore it is recommended that the default number of bhuffers be
retained unless you have a specific need for more simultaneocusly-active files.
Reducing the number of buffers used will increase the amount of memory which is
available for other uses, If fewer than 6 disk buffers are specified, then fewer
files may be simultaneously active. The extra memory freed up by specifying fewer
than 6 buffers may be used for custom 1I/0 device drivers if desired. See Tables
10-1 and 10-2 below for specifies regarding the effect of changing the number of
disk buffers available.

TABLE

10-1: NUMBER OF SIMULTANEOQUSLY ACTIVE FILES

DRIVES NUMBER OF BUFFERS

IN SYSTEM 2 3 4 5 6 7
1 2 3 4 5 6 if
2 2 3 4 5 6 7
3 & 2 3 4 5 &
i * * 2 3 y 5

NOTES FOR TABLE 10-1:

1. The values shown are the maximum number of simultaneously active files for

the listed combination of buffer count and disk drive count.

2. An entry of "®" indicates an illegal combination and that more buffers must

be specified.

NOTES FCR TABLE 10-2:

1. The DISKETTE and BACKUP utilities use $D300-$DUFF for

TABLE 10-2: FREE SYSTEM RAM ADDRESSES

ADDITIONAL FREE RAM

OF DISK

BUFFERS AVAILABLE
7 $D300-D3FF
6 $D300~DYFF
5 $D300-D5FF
4 $D300~D6FF
3 $D300-D7FF
2

$D300-DTFF, $E000-EQFF

(Normal configuration)

special buffers.

You should therefore use these utilities with caution if you increase the number of

buffers to greater than 6.

In this case you should ensure that you FREE
nels assigned to files before running the utilities to avoid conflicts.

all chan-

Track-to-Track Step Time

The disk controller hardware needs to know how fast the disk drives are able to
respond to track seek step commands. If the disk controller tries to step too
fast, the disk drive will ™lcose its place" and not position the head over the
correct track. The default value of 8 milliseconds is slow enough to accomodate
all disk drives supplied by MTU. If you have double-sided drives supplied by MIU
or have supplied your own drives with a faster seek time than 8 milliseconds, you
may wish to change the step time. Decreasing the step time will substantially
improve the performance of the system. The optimum settings for drives supplied by
MTU are shown below:

MTU System Number Disk Drive Type Track-to-Track Step Time
MTU-130-13 Single-sided 8
MIU-130=1D Doublewsided 3
MTU-130-23 Single-sided 8
MTU-130-2D Double-sided 3

If you have disk drives from another source, you will have to find the rated track-
to-track step time in the drive manual or continue to operate with the default.
Remember that the SYSGENDISK utility requires the step time in hexacdecimal so a
step time of 10 milliseconds would be entered as an A. T

Head Load Time

The disk controller hardware needs to know how fast the disk drives are able to
press their read/write head against the diskette. If the disk controller tries %o
read or write too soon after commanding the head to load, read or write errors are
likely. The default value of 50 milliseconds is slow enough to accomodate all MTU
disk drives but may be slower than 1is necessary. Longer than necessary head load
time usually has a small impact on system performance except when copying small
records from one drive to another. The table below may be referred to if you have
disk drives supplied by MTU:

MTU System Number Disk Drive Type Head Load Time
MTU-130-1S Single-sided 36 ($24)
MIU-130-1D Double-sided 50 ($32)
MTU-130-28 Single-sided 36 ($24)

TU-130-2D Double-gided 50 ($32)

If you have disk drives from another source, you will have to find the rated head
load time in the drive manual or continue to operate with the default. DO NOT
experiment to find the fastest allowable head load time since read errors are
hidden by CODOS and write errors may not be noticed until long after they are made.
Remember that the SYSGENDISK utility requires the head load time in hexadecimal so
a value of 30 milliseconds would be entered as 1E.

RUNNING SYSGENDISK

Any changes you make using SYSGENDISK are made to the copy of the operating
being run , and Therefore will not be activated until you reboot the system. The
changes made are permanent (until you rerun SYSGENDISK). Any copies of the system
made using FORMAT after running SYSCENDISK will also have the new attributes. Do
not run SYSGENDISK on the Distribution disk.

The disk in drive O must not be write-protected, and the file CODOS.Z mnust be
unlocked before executing SYSGENDISK, To begin, type the CODOS command:

SYSGENDISK
which initiates the program. The first prompt will be:

THIS UTILITY MODIFIES DISK ATTRIBUTES
FOR CODOS ON DRIVE O DISK

DEFAULTS SHOWN IN ().

WANT TO PROCEED (Y)7=

If your reply is just a carriage return or starts with “Y", the program will pro-
ceed; otherwise, it terminates. The "Y¥" displayed in parentheses indicates the
default reply if a carriage return is entered. The disk in drive O will be acces-
sed momentarily, and the Utility will display:

OF DRIVES (2)7=
The number in parentheses is the present number of drives known to CODOS. Enter
the number of disk drives in your system, 1 to 4. Double-sided drive counts as one
drive, not two. The next prompting message displayed is:

DISK BUFFERS (6)7=

which requests the number of disk buffers for the system, 2 to 8. Normally you
will simply reply with a carriage return to this prompt.

After specifying the number of disk buffers in the system, the next prompt is:
TRACK STEP RATE ($08 MS)?=

The present setting of the step rate will be shown in parentheses. Entering a
carriage return will keep the present step rate. The value you type must Dbe an
integer between 1 and $F (15 decimal).

HEAD LOAD TIME {$32 MS)?=

The present value 1is shown in parentheses and 1is retained if you type a carriage
return. Legal values may range from 2 to $FE milliseconds in 2 millisecond incre-
ments. After you enter your value for head load time, the operating system file
will be updated on disk and the Utility will terminate with the message:

SYSTEM MODIFIED.
CHANGES WILL BE ACTIVATED ON NEXT POWER-UP.
SUGGEST YOU LOCK CODOS.Z

This completes SYSGENDISK. To test the modified system, re-boot CODOS.

10-5

ADDING A PRINTER TC THE MTU-130

The first peripheral device most people add to their MTU-130 computer is a
printer. The MTU-130 can accommodate almost any printer for small computers on the
market today, with the appropriate interface cable. Either parallel (Centronics
interface) or serial (RS-232 interface) printers can be used.

Adding a printer involves three steps:

{1) Make or buy an appropriate interface cable for your printer.
(2) Generate a software printer-driver program to run your printer.
(3) Tell CODOS that you have a printer and where the driver routine is.

To help you with the first step, please refer to tables 10-4 and 10-3 which
specify the cable connection requirements for several popular printers. If your
printer is not among these, you will need to consult the printer manual. If you do
not wish to make your own cable, a local computer store can make one for you.

For many pecple, the most difficult part of adding 2 printer is writing the
goftware "driver" subroutine in machine language. Luckily, the SYSGENPRINTR util-
ity program will normally do all the work for this step for you! This program will
ask you questions about your printer and write an output-only printer driver con-
figured according to your answers, This should be sufficient to handle most of the
general purpose printers available for microcomputers. SYSGENPRINTR is explained
in detail later in this section. 1In rare instances printers will be too unusual to
handle with SYSGENPRINTR. If your printer requires special contrel codes or error
handling, the printer driver generated by the SYSGENPRINTR program may not be
sufficient. Guidlines for c¢creating your own printer driver from scratch are inclu-
ded later in this section.

Finally, you will need to permanenetly modify CODOS so that it "knows" that ycu
have a printer available. To do this, run SYSGENDEVICE, which is another cconversa-
tional utility program. SYSGENDEVICE is described in detail later in this section.

Once you have performed these steps, your printer will be immediately available for
use as sSoon as you power-up your MTU-130.

TABLE 10-3: INTERFACE ATTRIBUTES FOR SELECTED PRINTERS

Parallel Interface Printers

PRINTER STROBE PULSE BUSY SIGNAL NOTES

MXT70 N H

Mx80 N H Select PRINT AND LINE FEED on buffer
full.

IDSuk0 N H

Serial Interface Printers

PRINTER DATA BITS STOP BITS PARITY BAUD RATE NOTES

ANACOM 150] 2 N 9600 Set 9600 baud rate
Set BUSY = - volts

10-6

TABLE 10-4; CONNECTIONS ON MTU-130 END OF PRINTER CABLE

PARALLEL
Connectors - T&B/ANSLEY 609-36M
PIN # SIGNAL NAME
19 GROUND
27 DATA O (PBO)
9 DATA 1 (PB1)
28 DATA 2 (PB2)
10 DATA 3 (PB3)
29 DATA 4 (PBY)
1 DATA 5 (PB5)
30 DATA 6 (PB&)
12 DATA 7 (PBT)
31 BUSY {CB1)
13 STROBE {CB2)

NOTES FOR TABLE 10-X:

1. The parallel connections use CB2
sary to turn off the printer if you want

such as with BASIC's TONE command.

for
to

SERIAL
Conntectors = Type: DB=25P
PIN # SIGNAL NAME
7 GROUND
2 DATA OUT
5 CTS (Clear To Send)

the strobe signal.

TABLE 10-5: CONNECTIONS FOR PRINTER END OF CABLE FOR SELECTED PRINTERS

PARALLEL
EPSON IDs
MX70 440
MX80
SIGNAL NAME PIN # PIN #
GROUND 19 7
DATA O 2 i
DATA 1 3 13
DATA 2 4 12
DATA 3 5 "
DATA 4 6 10
DATA 5 7 9
DATA 6 8 15
DATA 7 9 =
BUSY 11 - 19
STROBE 1 3

SERIAL
ANACOM
150
SIGNAL NAME PIN #
GROUND 7
DATA 3
TS 11

10-7

It may be neces-
use the CB2 signal to generate sound,

RUNNING SYSGENPRINTR

Make sure that you have a non-write-protected disk in drive 0. To run the
SYSGENPRINTR program, enter the CODOS command:

SYSGENPRINTR

The program will inform you of its funetion and
continue, enter "Y' and then carriage return, or
enter "N" and then carriage return.

ask if you want to continue. To
just carriage return. If not,

The SYSGENPRINTR program will now ask you a series of questions about how to
configure your printer driver, based on the characteristics of your printer. A1l
responses consist of entering the appropriate key followed by a carriage return.

In cases where a default selection is supported, you may respond with just a
carriage return. The default selection is indicated by an underline. If none of
the selections are underlined, then a default selection is not allowed. If a

response is not valid, the question is repeated until a valid response is obtained.

In the discussions below, the necessity of a carriage return may not be mentioned,
but is always implied.

Question 1 - Do you want your printer driver to perform TAB expansion (Y/n)?

This question should be answered by entering "Y" or "N" to signify yes or noc,
respectively. Answering yes means that the hex code $09 (CNTL-I) will be inter-
preted as a tab character. The printer driver will count characters starting from
the last carriage return or form-feed sent. When a TAB character is received,
spaces will be ocutput until the next tab position is reached. The tab positions
are determined by the contents of the Global Tab Table found at $06EQ. I beyond
the last tab stop, no spaces are printed.

Answering no means that the characters will be sent

to the printer with no
special handling for tabs.

Question 2 - Do you want your printer driver to insert line feeds
returns (Y/N)?

after carriage
Answering yes means that after every carriage return ($0D) sent to the printer, the
printer driver will automatically send 2 line feed ($0A). This assumes that your
printer does not automatically line feed when a carriage return is received.

Answering no will configure the printer driver to not send a line feed after a
carriage return.

Question 2 - Does your printer have a parallel or serial interface (P/S}?

This question should be answered by entering "P" or "3" to signify parallel or
serial, respectively. If parallel is selected, a sequence of questions dealing
with the parallel interface will be asked. Skip to Parallel Printer Driver section
for the remaining questions. If serial is selected, a different sequence of

questions will be asked. Skip to Serial Printer Driver section for the remaining
questions.

Parallel Printer Driver

The SYSGENPRINTR program will configure a parallel interface which sends 8 bits
of data. A character will be transferred to the printer with a strobe pulse, to
which the printer should respond by activating a Busy signal. This Busy signal
should remain active until the printer is ready %o receive another character.

10-8

You may refer to Table 10~3 to see if your printer is listed. If so, you may
use the answers provided. If not listed, you should refer to your printer manual
to determine the proper answers.

Question 3P - Does your printer require a negative or positive going STROBE pulse
(N/P)?

This question should be answered by entering "P'" or "N" to signify positive or
negative, respectively. Answering positive will select a positive STROBE pulse.
This means that the STROBE signal will normally be low, with a positive pulse
cceuring when a character is to be transferred to the printer. Answering negative
will select a negative STROBE pulse. In this case the STROBE signal will normally
be high, with a negative pulse occuring when a character is te be transferred.
Answering this question with a carriage return will select the default, which 1s a
negative STROBE pulse.

Question 4P - Does your printer generate an active high or low BUSY signal (H/L)?

This question should be answered by entering "H" or "L" to signify high or low,
respectively. Answering high will cause the printer driver to look for a high-to-
low transition of the BUSY signal to indicate when the printer is ready to receive
another character. Answering low will cause the printer driver to lock for a low-
to-high transition of the BUSY signal to indicate when the printer is ready to
receive another character. Answering with a carriage return will select the
default, which is a high BUSY signal.

This concludes the parallel configuration questions. The configured printer
driver will be written to the file PRINTDRIVER.Z. If the file already exists, you
are given the choice of overwriting the file or aborting the writing of the file.
The SYSGENPRINTR program then returns to CODOS. The file written will have two
parts. The printer driver will occupy the region from $D280 to $D2FF. A second
part, which is an initialization routine, will start at $B40OO. This initialization
part can be freely overwritten by other programs (such as the utility programs),
because it is executed only once when the driver is initialized.

Serial Printer Driver

The SYSGENPRINTR program will coniigure a serial interface which transmits the
appropriate number of bits with the desired parity and baud rate. The printer
driver will make use of the 6551 serial interface IC in the MTU-130 to perform the
transmission. The 6551 IC expects the CTS (Clear to send) signal to go high when
the printer is not ready to receive characters. (IMPORTANT NOTE: If the CTS line
is raised while a character is being transmitted, the remaining untransmitted bits
of the character are forced to ones. This will cause an incorrect character to be
transmitted. The serial printer driver will wait 2 milliseconds after each char-
acter is transmitted +¢o allow time for the printer to raise the CTS signal. If
your printer does not update the CTS signal in this time frame, you will need to
make other arrangements).

You may refer to Table 10-3 to see if your printer is listed. If so, you may
use the answers provided. If not listed, you should refer to your printer manual
to determine the proper answers.

Question 35S - Does your printer require 7 or 8 data bits (7/§)?

10-9

This question should be answered by entering "T" or "8" to signify 7 or 8 data
bits, respectively. If 8 is selected, all & bits in each byte are transmitted. If
7 is selected the least significant 7 bits of each byte are transmitted. Answering
with a carriage return will select the default, which is 8 data bits.

Question 48 - Does your printer require 1 or 2 stop bits (1/2)%

This question should be answered by entering "1" or "2" to signify 1 or 2 stop
bits, respectively. Answering with a carriage return will select the default,
which is 1 stop bit.

Question 53 - Does your printer require ODD, EVEN, MARK, SPACE or No parity
(0,E,M,S8,N)7

This question should be answered by entering "Om", "E", "M", "3", or "N". The
"O" and "E" Kkeys selects odd or even parity, respectively. The "M" and "3" keys
select transmission of a mark (1) or space {(0) bit, respectively. The "N" key
selects no parity. If you've previously selected 8 data bits and 2 stop Dbits, you
will be informed that a response other than "N" will reduce the number of stop bits
te 1. Answering with a ecarriage return will select the default of no parity.

Question 6S. What is the desired baud rate (50,75,110,134, 150,300,600, 1200,1800,
2400,3600, 4800,7200,9600,19200)7

This question should be answered with a the desired baud rate., This baud rate
should be one of those listed in parentheses.

This concludes the serial configuration questions. The configured printer
driver will be written to the file PRINTDRIVER.Z. 1If the file already exists, you
are given the choice of overwriting the file or aborting the writing of the file.
The SYSGENPRINTR program then returns to CODOS. The file written will have two
parts. The printer driver will occupy the region from $D280 to $D2FF. A second
part, which is an initialization routine, will start at $B400. This initialization
part can be freely overwritten by other programs (such as CODOS utility programs),
because it is needed only during initialization.

FINAL STEPS FOR ADDING A PRINTER

To make CODOS aware of the printer device you must run the SYSGENDEVICE utility
as described later in this section. Respond with "1" {o the first question %o add
a device. Next, you must specify a single character device name. npr i3 the
standard name for a printer, but you may respond with any single letter except "C"
or "N". The printer driver doesn't perform any input, so respond with a carriage
return to the prompt for an input driver addreas. Respond with "D280" as the
output driver address. This completes the configuration of CODOS for a printer
driver. Before using the printer driver, you must first execute the command:

PRINTDRIVER.Z

which loads the printer driver code, and executes the initialization routine. You
will normally want to add this command to the STARTUP.J file. You must execute
this file (not just GET it) to perform the necessary initialization. You should
also note that after pressing RESET on the keyboard, it will be necessary to re-
execute PRINTDRIVER.Z before using the printer, because RESET clears the I-0 ports
on the MTU-130. Failure to initialize the printer driver will cause the system to
"hang" or crash when an attempt is made to print.

10-10

WRITING AND ADDING YOUR OWN I/O DRIVERS

This section describes how you can write your own device drivers for additional
printer types not already covered in this section or other output or input devices,
and how to define them to CODOS. Up to six additional device drivers, each poten-
tially capable of input and output, may be added. Except for a 1little bit of
programming, adding a custom device driver is almost as easy as adding one of the
standard ones described previously.

The following list outlines the steps necessary for interfacing a new device to
CODOS:

1. Decide how the device will interface electrically with the system, i.e.,
parallel port, serial port, custom logie board, ete.

2. Wire the interface cable or build the interface board and test the eleectrical
interface.

3. Write the driver program according to the guidelines to be described.
4. Decide where the driver program is to¢ reside and then assemble it.

5. Run the SYSGENDEVICE utility to define the device and driver to CODOS.
6. Test the device and its driver interface to CODOS.

7. Modify the STARTUP.J file so that the new driver is automatically loaded when
the system is booted up.

Bach of these steps will now be described in detail.

ELECTRICAL INTERFACE

Generally the device itself will dictate the interface method to be used. A
printer with a parallel interface for example would normally be interfaced through
the User parallel port connector on the MTU-130 rear panel. With the parallel
port, it is best to use the "A side" ports first and save the "B side" for later
use. In particular you try to avoid using the CB1 and CB2 signals since some BASIC
programs may use them for geunerating sounds. It is helpful to scan the Programming
chapter of the Monomeg hardware manual to determine what the exact capabilities of
the built-in parallel and serial I1/0 ports are.

INTERFACE CABLE

Typically a device interface will use only a portion of the parallel or serial
1/0 port signals. Therefore it is wise to construct the interface cable plug that
mates with the MTU-130 so that another cable that connectes to another device and
uses the remaining signals can be attached to the same plug at a later date. It is
sometimes possible to obtain a parallel port mating connector that has both a plug
and a socket together as well as an exit hole for the cable somewhat like a
Christmas tree light set. This would allow two or more interface cable sets to be
"stacked up" and the devices used simultaneously as long as there are no electrical
conflicts among the devices.

10-11

WRITING THE DRIVER PROGRAM

Unlike many operating systems, CODOS makes very few demands on the device
driver routines it interfaces to. A full bi-directional (both input and output)
driver routine may have a3 many as 3 entry points whereas a simple output-only
routine might have only one entry point.

The initialization entry point 1is optional. If the device or the driver
routine must be initialized before it can be used for inpuft or cutput, this entry
point is expected to perform that initialization. The initialization entry point
will be called by CODOS only cnce at the time the driver routine is loaded into
memory. There are no arguments passed and the state of the registers upon return
is immaterial. Stack usage should be balanced however and an RTS instruction
should be used to return to CODOS when initialization is complete. The initializa-
tion entry point may use any CODOS facilities it desires such as SVCs.

The input byte entry point is present only if the device is capable of an input
function. This entry point is called every time CODOS wishes to read a byte from
the device. The driver is expected to wait until the device has a byte available,
read it, and return it to CODO3 in the A register. A1l 8 Dbits of the byte are
significant so if the most significant bit needs to be masked off, the driver
should do it. The carry flag should be returned clear unless you wish to signal
end-of-file. Note that inputting a CNTRL-Z character ($14) does not indicate end-
of file. This allows all 256 possible codes to be input. If your input device is
a character-oriented device, CODOS expects an ASCII CR {(Carriage Return) to be used
for end-of-line and for a feed to the next line., If the device uses a different
convention (such as separate carriage return and line feed functions), the input
driver should filter out a line feed immediately following a carriage return. The
X and Y registers need not be saved or restored. Stack usage must be balanced and
an RTS must be used to return to CODOS. The input byte entry point may not use
3VCs. It is recomnmended that the stack or locations within the driver routine
itself be used for temporary storage.

The output byte entry point 1is present only if the device is capable of an
output function. This entry point is called every time CODOS wishes to write a
byte to the device. The driver is expected to wait until the device is ready to
accept a byte and then send it the byte CODOS has passed in the A register tc the
device. All 8 bits of the byte may be significant so if the device requires the
most significant bit to be zero, the cutput driver should mask it off. CODOS uses
an ASCII CR character to end a line and automatically feed to the next line. If
the device requires separate LF characters to feed to the next line, the output
driver should insert them after CR characters itself. The A, X, and Y registers
need not be saved or restored. Stack usage must be balanced and an RTS must be
used to return to CODOS. The output byte entry point may not use SVCs. It is
recommended that the stack or locations within the driver routine itself be used
for temporary storage.

The 1listing on the next page is an example of a simple printer driver. Of

course every printer is different but this should serve to illustrate how a driver
routine is written.

10-12

LISTING 10-1: SAMPLE DEVICE DRIVER

ANACOM PRINTER DRIVER FOR MTU-130 CODOS MTU 6502 ASM 1.0 *UNDATED*
0001 0000 .PAGE 'ANACOM PRINTER DRIVER FOR MTU-130 CODOS'
0002 0000 ;
0003 0000 ; THIS PRINTER DRIVER WORKS FOR THE ANACOM 150 PRINTER, AND MAY WORK
9004 0000 ; FOR OTHER PRINTERS WITH SERIAL INTERFACE AS WELL. TO MODIFY THE
4005 0000 ; BAUD RATE AND OTHER TRANSMISSION PARAMETERS, SEE THE 6551 DATA SHEET
0006 0000 ; AND PRINTER OWNERS MANUAL AND MODIFY THE BYTES SET BY "INITPR"
0007 0000 ; APPROPRIATELY. THIS VERSION USES 9600 BAUD WITH NO PARITY.
0008 0000 ; TO INITIALIZE, EXECUTE ENTRY POINT INITPR. TO OUTPUT CHARACTER,
2009 0000 ; USE ENTRY POINT OUTPR WITH DESIRED CHARACTER IN A. OUTPR RESTORES
0019 0000 ; A, X, AND Y REGISTERS; INITPR RESTORES X AND Y. NOTE THAT ANACOM
0011 0000 ; REQUIRES A LF INSTEAD OF & CR FOR A NEW LINE; THIS WILL NOT BE TRUE
0012 0000 ; FOR MOST OTHER PRINTERS. THE DRIVER MUST BE RE-INITIALIZE AFTER ANY
0013 0000 ; RESET OF THE SYSTEM.
0014 0000 ;
7015 D280 = CODORG = $D280 ;STARTING LOCATION FOR ROUTINE
0016 0000 ;
0017 0000 ; 6551 CHIP EQUATES...
0018 0000 ;
0019 BFCE = DR = $BFC8 ;6551 TRANSMIT/RECEIVE DATA REGISTER
0020 BFCY = SR = DR+1 ;RESET/STATUS REGISTER
0021 BFCA = COMR = SR+1 ;COMMAND REGISTER
0022 BFCB = CTRR = COMR+1 ;CONTROL REGISTER
2023 0000 ;
0021 G000 *= CODORG {ENTRY POINT FOR NORMAL CHARACTER OUTPUT...
0025 D280 :
0026 D280 48 OUTPR PHA :SAVE CHARACTER TO PRINT
0627 D281 ADCYBF OUTPR1 LDA SR ;EXAMINE STATUS REGISTER
0028 D284 2910 AND #$10 ;ISOLATE "TRANSMITTER READY" BIT
0029 D286 FOFY BEQ OUTPR1 3WAIT TILL ITS READY
¢ D PLA ;THEN RECALL CHARACTER
0037 D289 C90D CMP #$0D ;IS IT A CARRIAGE RETURN?
C032 D28B FOOY BEQ OUTPRY ;IF SO BRANCH
0033 D28D 8DCBBF STA DR ;ELSE OUTPUT TG TRANSMITTER
0034 D290 60 RTS :RETURN TO CALLER
0035 D291 ;
7036 D291 A90A OUTPRY LDA #50A ;REPLAGE CR WITH ASCII LF
0037 D293 BDCBBF STA DR ;OUTEUT TO TRANSMITTER
0038 D296 A90D LDA #30D ;RESTORE REG
0039 D298 60 RIS {RETURN TO CALLER
0040 D299]
0041 D299 i #%2COME HERE TO INITIALIZE WHEN DRIVER I3 LOADED...%¥#
0042 D299]
0043 D299 .ENTRY
0O4YL D299 8DCYBF INITPR STA SR ;STORE ANYTHING TO RESET CHIP
0045 D29C A90B LDA #$0B ;NO PARITY, NO ECHO, RTS ON, NO INTERRUPT,
0046 D29E SDCABF STA COMR ;RTS ON.
0047 D287 A9IE LDA #$1E ;8 DATA BITS, 1 STOP BIT, 9600 BAUD.
0048 D2A3 BDCBBF STA CTRR
0049 D246 60 RTS sRETURN TO CALLER
0050 D2AT ;
0051 D2AT .END
0 ERRORS IN PASS 2

10-13

WHERE TO PUT THE DRIVER

Generally I1/0 drivers are expected to remain in memory ready for use regardless
of what programs may have been run since CODOS was last booted up. To meet this
geal it is necessary to store the driver in an area of memory away from the user
area that extends from $0700 through BFFF. CODOS has a 128 byte area from $D280
through $D2FF reserved for this purpose. This 128 bytes is generally enough to
hold a printer driver and is often adequate for two or three simple drivers.

Another area that wmay be used, particularly on systems with only two disk
drives, 1s one or more of the disk buffers., On dual drive systems you can use the
512 bytes from $D300~DUFF and still have enough buffers for 6 simultaneously active
files. However, certain utilities such as DISKETTE and BACKUP also uss this area,
so you will need to reload your driver routines after running such utilities.
Device drivers are expected to reside in memory bank 0.

SYSGENDEVICE UTILITY

Thiz utility program is used to interface your deviee driver program &to CODOS.
The utility will first ask you what single letter name you wish to asscciate with
the deviece. "P" for printer is obvious but any letter that is not already used is
acceptable. Please note that "C" and "N"™ have already been assigned to the conscle
and null device respectively. Tt will next ask you what the entry point address
for input is. If your driver can do input, enter the hex address of the input
entry point. If it cannot, reply with a carriage return to prevent CODOS from ever
trying to input from this device. Finally it will ask the entry point address for
output. If your driver can do output, enter the address of the output entry point;
otherwise just enter a carriage return. Remember that SYSGENDEVICE only modifies
CODOS on the disk in drive 0, it does not affect the copy currently in memory. You
will have to re-boot to get the modified versicn of CODOS in memory before you can
test the driver with CODO3., SYSGENDISK is deseribed in more detail later in this
secion.

The initialization entry point should be the entry point address specified when
the driver program object code is saved on disk. Then if initialization is neces-
sary, the driver is loaded and initialized =imply by giving its name, either from
the keyboard or a job file. 1If there 1is no initialization entry point, then the
GET command would be used to load the driver.

TESTING

After CODOS is modified with SYSGENDEVICE and the driver itself is locaded into
memory (and initialized if necessary), it is ready to be tested. For an output
device like a printer, you can do this simply by entering the command: TYPE C P
{assuming the device name was "P")}. This "connects" the keyboard te the device and
every line you type wWill be sent to the device when you hit carriage return. The
connection is broken by typing a eontl/Z. For an input device, you c¢ould enter:
TYPE T C {assuming the device name was "T") and input from the device will appear
on the console display line-by-line. Receipt of an ASCII SUB (cntl/Z or $1A) or
pressing the INT key will restore normal console operation. 0f course these
suggestions only apply to text-oriented devices that use the ASCII character code.
Other device types will have to be tested with a program.

10-14

LOADING WITH THE STARTUP.J FILE

After the new device and driver 1is throrughly tested, you will probably want
the driver to be automatically loaded whenever the system is turned on so that the
device will be ready for use. This 1is accomplished by adding a line to the
STARTUP.J file that loads the driver into memory and runs it if initialization is
necessary. Please refer to the STARTUP.J section of this chapter for further
information on this procedure.

INTERRUPT DRIVEN I/0
-You may use interrupt-driven devices if desired. In this case, the device's
interrupt service routine should input or output bytes into a local buffer. The

Device-In or Device-Out driver should transfer one byte between the accumulator and
this buffer during each call from CODOS.

10-15

RUNNING SYSGENDEVICE

To ammend CODOS for new devices, first make sure you have a non-write protected
disk in drive 0 with COD0S.Z unlocked. Then execute the CODOS command:

SYSGENDEVICE

whiech starts the interactive program for changing the names and characteristies of
I-0 devices on your system. Once these medifications are made, you will be able to
assign a CODOS channel to the device and perform input-cutput. The modifications
which you make become permanent (until you run SYSGENDEVICE again), and any copies
of the modified system made using the FORMAT utility will also possess the modified
I-0 device attributes. Table 10-~7 lists requirements for device-driver subroutines
under COD0OS. Once you have written or obtained the necessary device-driver subrou-
tine, you can add your new device to CODOS' device table by executing SYSGENDEVICE.
The Utility prompts:

THIS UTILITY PERMANENTLY MODIFIES THE
DEVICE DRIVER TABLE IN CODOS ON DRIVE O.
DO YOU WANT TO:

(0) QUIT,

(1) ADD A DEVICE, or

(2) DELETE A DEVICE, COR,

?:

Enter the appropriate number, 0 to 2, and a carriage return. For example, assuning
that you wished tec add a line printer device, you would enter "P" for the line
printer name. The Utility will respond with:

INPUT DRIVER ADDR. (CR=NONE)?=

If your device does not have an input capability (for example, a line printer),
respond with a carriage return. Otherwise, enter the address of the

machine~language driver subroutine for inputting a character from your new
device. 3See note 3 below. The next prompt is:

QUTPUT DRIVER ADDR. (CR=NONE)?=
In a like manner, enter the address of the character-output driver routine. The
cutput driver address for the standard printer driver generated by SYSGENPRINTR is
$0280. You will enter:

D280

The program will terminate with the message:

MODIFICATION COMPLETE.
SUGGEST YOU LOCK COD0S.Z

This completes the procedure. The new device will be available to your system as
scon as you re-boot CODOS.

Deleting an existing device is accompished in a similar manner by responding with a
oM to the initial SYSGENDEVICE prompt and then indiecating the device to delete.

10-16

NOTES:

1. The file CODOS.Z must be unlocked prior to executing SYSGENDEVICE or no
changes will be made and an error message will be issued.

2. The modifications made to the system are made on the disk copy of the
system In drive O; therefore, the changes will not become effective until the
system i3 booted up.

3. The requirements for device drivers are summarized in Table 10-7,

4, To modify an existing device, first delete it and then rerun SYSGENDEVICE
to add the same device.

5. You may not delete the Console or Null devices.

6. Naturally, the SYSGENDEVICE Utiltiy does not automatically save your device
driver{s) on disk; it is your reponsibility to see that they are loaded into memory
before being executed. This can be done automatically during booting-up, if
desired, as explained elsewhere in this section.

7. You may add up to b custom devices besides the null device and Console.
8. When answering questions which have a "no change" option for a reply,

remember that the M"present” status of the system 1is the status of the system on
disk 0, not the present memory-resident CODOS image.

TABLE 10-7: CONSOLE AND DEVICE DRIVER REQUIREMENTS

Driver

Subroutine Function and Requirements

Device-In Input byte from device. This routine muét return the byte of data
from the device in the A register. It does not have to restore X or
Y before returning. The Carry should be cleared. See note 1 below.

Device=-0ut Output byte to device. This routine should output the contents of

the accumulator to the device. It does not have to restore the X or
Y registers before returning. See note 4 below.

NOTES FOR TABLE 10-7.

1. CODOS can input or output all 256 possible byte codes to devices. If an input

device returns the carry set, however, the system will interpret it as an end-of-
file indication.

2. I=0 drivers may not use SVC's and should return in non-decimal mode.

3. You may use interrupt-driven devices if desired. In this case, the device's
interrupt-service routine should input or output bytes into a local buffer. The
Device-In or Device-Out driver should transfer one byte between the accumulator and
this buffer during each call from CODOS.

4. The line terminator is a CR character. If your device needs a LF, your driver
should add it.

USING THE STARTUP.J FILE

Using the STARTUP.J file is perhaps the most flexible and powerful method of
system modification. Since the STARTUP.J file can contain any list of commands
(built-in or user-defined), you can include SET commands to automatically "pateh”
the parameter area or operating system image in memory after it is loaded. The I/0

driver parameters you would most likely want to change are described later in this
section. CODOS parameters are described in Appendix E.

Since the STARTUP.J file is nothing more than a file of ASCII text, you can
write your own STARTUP.J file by simply using the TYPE command the text editors.
To be on the safe side, we suggest you create your new command file under another
name, and then, when you are sure its correct, DELETE the old STARTUP.J and RENAME
your new file as STARTUP.J. Generally speaking, you can design your own STARTUP.J
file as you please, but you should keep in mind the notes listed selow when doing
so. Never modify the STARTUP.J file on the Distribution disk.

NOTES:

1. Keep in mind that only CODOS itself is automatically loaded by the boot-
strap loader PROM. All other programs and subroutines reeded for system operation
(such as the keyboard and text display I/0 drivers) must be loaded by commands in
the STARTUP.J file.

2. You can't do any input or output to a device until its driver subroutines
are loaded (or executed if initialization is needed).

3. Any error detected by the system causes CODOS to stop reading the STARTUP.J
file and to try to issue an error message. Thereafter it will try to read from the
Console. It is normally a good idea to laod and initialize your Console device
drivers (by executing IODRIVER.Z) as soon as possible in the STARTUP.J sequence, SC
that if you have a mistake in the STARTUP.J file or other problem, you will be able
to see the error message.

. The STARTUP.J file must GET SVCPROC.Z if you plan to use SVCs. Almost all
Utility programs including the Editor require the SVC processor.

5. The STARTUP.J file must GET GRAPHDRIVER.Z if you plan to use graphics. All
of the Graphics Libraries for BASIC except KGL assume that this file has been
loaded into memory. The Editor also requires GRAPHDRIVER.Z.

6. You cannot LOAD or SET into reserved memory unless you UNPROTECT first.

7. It is a good practice to re-PROTECT the system after you are done with any
modifications.

8. Do not change the STARTUP.J file on the Distribution disk provided by MTU.

10-18

SAMPLE STARTUP.J #1:

Below 1s a 1listing of the standard STARTUP.J file supplied on the Distribuiton
disk:

;This is the default STARTUP.J file for MTU-130 COD9S 2.0...
IODRIVER.Z ;Load & initialize Console I-0 drivers.

GET SVCPROC.Z ;Load SVC Processor.

GET GRAPHDRIVER.Z ;Get Graphics Drivers (Needed by EDIT).
DATE ;Prompt for entry of date.

The IODRIVER.Z file is loaded and run in the second line to insure that the console
I/0 devices are initialized prior to being used. The SVC processor and graphics
subroutines don't require initialization so they are just loaded by the next two
lines. The last line executes the CODOS DATE command. Since it is the last line

in the job file, CODOS will read commands from the console keyboard after the date
is entered.

SAMPLE STARTUP.J {fi2:

This is similar to the standard startup file except that the user prefers somewhat
different parameter values for the keyboard. He has also connected a printer to

the system and wishes to automatically start executing an assembly language
applieation program after the date is entered.

IODRIVER.Z ;LOAD AND INITIALIZE CONSOLE I-O DRIVERS

GET 3V G.Z ;LOAD SVC PROCESSOR

GET GRA IVER.Z ;LOAD GRAPHICS DISPLAY ROUTINES

PRINTDRIVER.Z ;LOAD AND INITIALIZE MY PRINTER DRIVER

SET 221 .150 ;WANT ABOUT 25CPS KEYBOARD REPEAT RATE

SET 213 80 ;I LIKE SILENT KEYBOARDS

DATE

BASIC

RUN STOCKANAL ;RUN MY PORTFOLIO ANALYSIS PROGRAM
The first three lines are the same as example 1. The fourth line 1loads and

initializes a driver program for a printer that has been added to the system. The
next 2 lines redefine some of the keyboard and sound parameters of the system. The
parameter addresses and their effects may be found in the next section or in

Chapter 8. The last lines will cause the BASIC program called STOCKANAL +o be
leoaded and executed automatically.

SAMPLE STARTUP.J #3:

This might be the STARTUP.J file that goes with an integrated laboratory data
aquisition and analysis software package., The startup file defines the function
keys such that pressing one will run a corresponding program from the package.

IODRIVER.Z ;LOAD AND INITIALIZE CONSOLE I-O DRIVERS
GET SVCPROC.Z ;LOAD SVC PROCESSOR

GET GRAPHDRIVER.Z ;LOAD GRAPHICS DISPLAY ROUTINES
DATE ;ASK FOR DATE

ONKEY 1 'NMR READ' 'NMR READ' ;Program to operate our NMR instrument.

ONKEY 2 'GC READ' 'GC_FEADPROG' jProgram to operate our gas chromatagraph.
ONKEY 3 'INTEGRAT' 'PEAKINTGRATE' ;Program to estimate fraction quantity.
ONKEY 4 'VIB ANAL' 'DO VIBRATEANAL.J!' ;Link to vibration analysis.

ONKEY 5

' BASIC' 'MTUBASIC' ;Allow general purpose computer use too.

10-19

The first 4 lines are the same as the standard startup file in example 1. The next
3 lines set up function keys 1, 2, and 3 to load and execute an assembly language
progran when they are pressed. The definition of function key 4 illustrates some

£ the power of functicn keys and job files. Pressing key ¥ will cause a Jjob file
called VIBRATEANAL.J to be executed. This job file could in turn redefine the
function keys for various compenent programs of a vibration analysis package. The
last line sets up key 5 to simply put the user in the BASIC interpreter for general
purpose computing.

I/0 DRIVER PARAMETERS

The system parameter area in low memory ($0200-027F) contains a number of
parameters that affect the "feel" of the conscle to a great extent. Default values
of these parameters have been selected that hopefully will satisfy most users. If
you wish to change any of these parameters, refer to the guidelines below for help
in determining their values. It is most convenient to include 3ET commands to set
the parameters in the STARTUP.J file but you may also enter SET commands through
the console any time CODOS is in control. Programs can alsc change the narameters
while they run. Only the most commonly altered parameters are explained here, a
complete list may be found in Chapter 8.

PARAMETER: RPTRAT -~ Keyboard repeat rate.

ADDRESS: 8221

DEFAULT VALUE: $C3 (195)

DESCRIPTION: This parameter determines how fast the keyboard repeats. The default
value of $C3 gives a rate of approximately 20 characters per second. To make the
rate slower, increase the value up to a maximum of $FF. To make it faster, de-
crease the value., The parameter is actually the repeat period {(time between re-
peats or 1/rate) in units of .000256 second. Remember that the repeat rate will
siow down if character processing takes longer than the repeat period.

PARAMETER: CURDLA - Curser flash rate.

ADDRESS: $222

DEFAULT VALUE: $06

DESCRIPTION: This parameter determines how fast the cursor flashes while waiting
for keyboard input. To make the rate slower, increase the value. To make it
faster, decrease the value. To eliminate the cursor altogether, set it to zero.

Note that the cursor stays on when 1t is moving so slower flash rates will not
materially affect the cursor's maneuverability.

10-20

PARAMETER: NOCLIK - Presence of audible key click.
ADDRESS: $213
DEFAULT VALUE: $00

DESCRIPTION: This parameter determines whether the keyboard will click when keys
are pressed. It is normally zero which allows clicks. If it is set to $80, then
clicks will be suppressed and permit silent keyboard operation.

PARAMETER: CLKVOL - Volume of audible key click.

ADDRESS: $225

DEFAULT VALUE: $20

DESCRIPTION: This parameter determines how loudly the keyboard will click (provided
eclicking is enabled). To make it louder, increase the value up to a maximum of
$7F. To make it softer, decrease the value. The waveform period (CLKPER) and
duration (CLKCY} will also affect the apparent loudness toc some extent.

PARAMETER: CLKPER - Piteh of audible key click.

ADDRESS: $224

DEFAULT VALUE: 305

DESCRIPTION: This parameter determines the pitch of the keyboard click. To
increase the pitch, reduce the value. To decrease the pitch, increase the value.
Note that a value of 0 is interpreted as 256. The actual tone fregquency in Hertz
is 5000/N where N is the parameter value. When using the higher pitches, you may

wish to increase the duration (CLKCY) or volume (CLKVOL) to retain good audibility.

DPARAMETER: CLKCY - Duration of audible key clieck.

ADDRESS: $226

DEFAULT VALUE: $02

DESCRIPTION: This parameter determines the duration of the keyboard elick. To
increase the duration, increase the value up to a maximum of $TF. To reduce the
duration, reduce its value. The number of waveform cycles produced is one plus the
duration parameter value. Note that the time reguired to produce the click tone is
added %to the character processing time so if the duration is excessive, keyboard
response will seem sluggish.

PARAMETER: BELVOL - Volume of audible bell tone.

ADDRESS: $228

DEFAULT VALUE: $40O

DESCRIPTION: See the CLKVOL parameter description for details.

10-21

PARAMETER: BELPER - Pitch of audible bell tone.

ADDRESS: $227

DEFAULT VALUE: $05

DESCRIPTION: See the CLKPER parameter description for details.
PARAMETER: BELCY - Duration of audible key click.

ADDRESS: $229

DEFAULT VALUE: $0C

DESCRIPTION: See the CLKCY parameter description for details.

PARAMETER: TABTBL - Tab stop table.

ADDRESS: $6E0-6FF
DEFAULT VALUE: $09, $11, $19, $21, $29, $31, $39, $41, $49, $00, . .

DESCRIPTION: This parameter is actually a list of up to 32 tab stops. The values
stored actually represent the column number that a tab stop is located on. The
first zero value marks the end of the table. The values must be stored in ascend-
ing sequence. Remember that the leftmost character position is column one, not
Zero.

10-22

€OoD0s
Error #

APPENDIX A
CODOS_ERROR MESSAGES

Error Message

MmO QA O VU W

2C

[IRETN TS RUSEVS IS \b b
[EVI SRR - e B o]

&£

Command not found.

File not found.

Drive needed is not open.

Syntax error in command argument.

Missing or illegal disk drive number.

Drive needed is not ready.

Locked file violation.

Missing or illegal channel number.

Channel needed is not assigned.

Diskette is write-protected.

Missing or illegal device or file name.

Missing or illegal file name.

Not a loadable ("SAVEd") file.

(from) address missing or illegal.

{to) address missing or illegal.

{fromr address greater than to address,.

Reserved or protected memory violation.

{value) out of range (greater than $FF or less than 0).
Arithmetic overflow.

{entry> address missing or illegal.

New file on write-protected diskette.

Illegal or unimplemented 3VC number.

Memory verify failure during SET or FILL.

{value® missing or illegal.

New file name is already on selected diskette.
Missing or illegal character string delimiter (' , ").
{destinatior® address missing or illegal.

Missing or illegal register name.

A1l buffers in use (free a chan. assigned to a file).
Unformatted disk or irrecoverable read/write error.
Breakpoint table full (3 BP's already set).
Write-protected disk or form=ziting error.

Input from output-only device, or visa-versa.

Not encugh channels are free for specified function.
No CODOS om drive 0, or system overlay load error.
Illegal entry into CODOS system.

Required software package not loaded in memory.
Diskette is full; all blocks already allocated.
Diskette is full; no room left in directory.
Unformatted diskette or drive went not-ready,
Unformatted diskette or irrecoverable seek error.
Unformatted diskette or hardware drive fault.
System crash: iliegal system overlay number.
System crash: illegal sector on disk.

System crash: directory/file table check error.
System crash: file ordinal check error.

System crash: illegal track on disk.

System crash: NEC 765 chip command phase error.
System crash: NEC 765 chip result phase error.
System crash: Directory redundancy check failed.
Missing or illegal memory bank number.

Missing or illegal function key number.

A-1

CODOS ERROR PROCESSING

When an error is detected by CODOS, the program being executed is aborted and
an error number is displayed on channel 2 (the Console). If the error occurred in
a built-in command, CODOS will display the erroneous command and an ™up arrow"
character pointing to the next character of the command which CODOS was going to
exanine. Note that this is not necessarily the location of the error! The error
could be anywhere before the up-arrow. If the error occurred during a user-pro-
gram the registers will be displayed in the state they were in when the offending
SVC was issued. If the error occurred during a CODOS Utiltiy, the registers show
the location where the error was detected in the Utility.

CODOS will issue an English error message detailing the problem if it can.
These error messages reside on the text file SYSERRMSG.Z. Therefore if the system
can't read this file from drive 0 it won't issue the message. Keeping the error
messages on disk greatly reduces the amount of memory required for the operating
system.

Provision has been made for user-defined error recovery in lieu of the default
error recovery by CODOS. This capability is provdied by SVC number 25 and is
described in Chapter 6.

APPENDIX B

CODOS FILE FORMATS

From the programmer's viewpoint, a CODOS file is simply an array of bytes with
a pointer to the current file position. Reads and writes always take place
starting at the current file position and advance the file position pointer by the
number of bytes read or written. The size of the file can be freely increased or
decreased at any time. Any write-operation which crosses the current end-of-file
will automatically increase the size of the file. A file can be truncated so as to
make the present file position end-of-file. The file can be repositioned at will
(but not beyond the present end-of-file) by using SVC #19. This structure is
called a byte-addressable file and is the most versatile file organization
available on a computer.

There are no reserved M"codes" for end-of-file, end-of-line, etc. You may
freely write and read all 256 possible bytes at any position in the file. This
lets you decide the file organization that makes sense for your application, rather
than letting the operating system dictate restrictions that make life simple for
it. CODOS keeps track of the present End-of-File by an internally-maintained
pointer. You can always determine the present End-of-File position from within a
program by positioning the file to End-of-File and executing SVC #20 to read the
file position.

Normal CODOS text files consist of variable-length lines terminated by an ASCII
CR (carriage return = $0D).

Loadable files (such as are generated by the SAVE command) have the following
format:

Size Description

byte $58 = ASCIT "X" = CODOS loadable file header byte.

byte Overlay number, normally $00 (can be defined by assembler .OVL pseudo-op).

byte Memory bank number, either 0, 1, 2, or 3.

oyte $00 = Reserved for future; always $00.

bytes entry address. Entry point into module. If not applicable, set to same
as from address, below.

2 bytes from address. Starting load address for block in memory.

2 bytes Size (not final addresa!) of memory block to be loaded.

n bytes Actual memory image to be loaded.

[AN NN

If multiple blocks are stored on the fiie, the above format is merely repeated as
many times as necessary. The GET command continues loading until End-of-File is
encountered or until a non-0 overlay number is encountered in the header. A
special overlay loader would presumably process blocks with non-zero coverlay num-

bers.
EXAMPLE :

The standard CODOS Utility COPYF loads into $BLOO though $B698 of bank 0 with
an entry point at $BUOC. The first few bytes of the file are (in hex):

58 00 00 00 OO0 B4 00 BUY 93 02 A9 01 8D ...

where the last three bytes (A 01 8D) are the first three bytes of the actual
program.

APPENDIX C

BOOTSTRAP LOADER OPERATION

The CODOS system is loaded into RAM by the 256-byte bipolar PROM on the Floppy
Disk Controller Board. This PROM occupies addresses $FFO0-$FFFF in bank 0. This
means that the Reset, Maskable interrupt (IRQ) and non-maskable (NMI) vectors are
also located in this PROM. The Reset vector points to the beginning of the PROM

($FFC0), the IRQ vector points to location $02FD, and NMI points to location $0Z2FA.
The PHOM cperates as follows:

1. Clear decimal mode, define stack pointer = $FF.

Test the keyboard "MOD" key and jump to $0300 if not down, otherwise
continue.

3. Copy disk controller command strings from PROM into memory from $00C3
through $00D6.

4, TRead track 0, sector 0 of drive 0 inte locations $FEDO through $FEFF.

5. Determine lcading information for the actual program to be loaded by

examining the f{ollowing addresses:
FE3C = FINALS = Final sector number for the load.
FE3D = DMAPG = DMA Address code for loading of the first sector.
FE3E, FE3F = ENTRY = Address-1 of entry point into program.
€, Load sectors 1 through FINALS from track 0 into memory starting at the
address corresponding to the DMA code DMAPG. See note 3 below.
7. Jump to address ENTRY+1.

Users with the necessary technical expertise may wish to use this information
to boct programs other than CODOS.

EXAMPLE:

The Standard MTU-130 CODOS program 1is supplied on the distribution disk ready
for execufion by the bootstrap loader. The memory image to be loaded is stored on

sectors 1 though 25 (sectors are numbered starting with 0) on track 0. Track 0O
sector 0 does not contain any useful information except for the following bytes:
$3C = $19 = Final sector to be loaded into memory from %track 0.
$3D = $08 = DMA address code for %3500.
$3E = $FF = Low address byte of entry point-1 ($E600).
$3F = $ES = High address byte of entry point-1.
NOTES:

1. The bootstrap loader uses page 0 as fecllows:
$00C3-$00D6 = NEC~765 Command Strings.
$00D7-$00DF = Scratch RAM, Result phase readouts from NEC-765.

2. Except for the four bytes described in step 7 above, the Bootstrap loader
does not use the information in track 0 sector 0 in any way.

3. The DMA code 1is the byte which is sent to the DMA address register, as
discussed in the Disk Ccontroller Hardware manual, It identifies which 6U4-byte
boundary in the disk controller RAM is to be used as the starting address for the
transfer.

4, The Bootstrap PROM assumes the disk is formatted for double density opera-
tion on drive 0 with 256-byte sectors, 26 sectors per track.

5. If the Bootstrap Loader detects a disk error, it moves 5 bytes (an $AA,
followed by the 4 disk controller status registers) to the beginning of display
memory and then retries the disk operation. It will do this indefinitely until the
disk operation is successful or Reset is hit.

6. The keyboard MOD key is used to distinguish between a cold Reset (key down)
and a warm reset (key up). The warm Reset is intended to re-enter CODOS through a
vector at $0300 without re-booting CODOS. A time-delay circuit effectively "pres-
ses" the MOD key on power-up to trigger a cold Reset.

APPENDIX D

SAMPLE APPLICATION PROGRAM

HIGH-SPEED, INTERRUPT-DRIVEN, DIRECT-TO-DISK DATA AQUISITION USING CODOS

Two features unique to CODOS are its high speed operation and its interrupt-
ability. Listing D-1 is a complete application program which illustrates the use
of S8VCs for high-speed, interrupt-driven data aquisition using a parallel port.
The program is assembled for the MTU~130 computer using the User 6522 VIA device,
but can easily be modified. The program itself is on the CODOS Distribution disk
with the filename DAQDEMO.C. In an actual application, the interrupts would
probably be generated by the input device itself (such as an A-D converter), but
for purposes of illustration, the 6522's internal timer is used to generate inter-
rupts at precisely timed intervals. This interval can be easily modified by chang-
ing the value of the constant DELAY at the end of the program. When the progranm
starts, it inputs a value every 250 microseconds (using the value of DELAY given)
and stores it on the disk, until 50,000 bytes have been read (12.5 seconds elapsed
time). The values are read from the 6522 A port, which is assumed to be connected
to the device of interest.

The most important point illustrated by this program is that no data is lost
while the operating system is writing to disk, because CODOS can be interrupted at
any time without harm. It also illustrates that a large volume of daba can be
written to disk in a short time.

Before using the program, you will need to prepare a new disk formatted with a
"data-aquisition skew”", by typing:

FORMAT 5

and proceeding with the FORMAT Utiltiy in the usual manner. The "S" argument tells
the operating system to arrange the sectors slightly differently from normal. This
has no effect on normal operation of the disk. The reason for this operation is
explained in note 1, below. Once you have FORMATted the disk and copied any
desired programs onto it, ASSIGN channel 6 to the file you wish save the data on.

Then execute the program. It will take about 12.5 seconds to complete, wusing the
DELAY and NSAMP (number of samples) values given.

The program itself is composed of two separate parts: a main program, and an
interrupt service routine. The interrupt service routine collects the data samples
into two buffers by filling first one and then the other. As each buffer becomes
full, the service routine sets a "Buffer Full" flag. The main program performs
some initialization, and then waits for a "Buffer Full" condition. As soon as a
buffer becomes full, the main program writes the entire buffer to channel 6 (the
disk file) as one CODOS record. While the "full" buffer is being written to disk,
the interrupt service routine is busy filling up the other buffer, one byte at a
time., When the main program is done writing the first buffer to disk, it clears
the "Buffer Full" flag and waits for the service routine to set the "Buffer Full"
flag for the asther buffer. This operation is called double-buffering. The flags
used for handshaking between the service routine and main program are called
semaphores, beause they tell when the program can "proceed". If the service
routine discovers that one buffer has become full before the other buffer has been
emptied by the main program, it aborts the program with a "BUFFER OVERRUN" message.
This condition occurs when you decrease DELAY to the peint where the service

reutine is stealing such a high percentage of the machine cycles that the main
pregram and CODOS can no longer complete all the operations needed to perform the
disk write in the time it takes to fill a buffer. Another flag called "DONE" is
set when the desired number of samples have been placed in the buffer. This flag
tells the main program to "flush"™ the final, partially-filled buffer to disk,
disable the timer interrupts, and free channel 6. Without this flag, the last
partial buffer-full of data would never be transferred from the buffer to disk.

When studying the program, you will notice that the buffers used were quite
large (8K bytes each). Thais is highly desirable when high-speed disk operations
are desired. CODOS can usually write one record of 8K bytes considerably faster
than it can write, say, 8 records of 1K bytes each. This is because each time you
use an SVC to write a record, CODOS has to perform a considerable amount of "over-
head", such as processing your SVC number, checking to see if the channel specified
is legal and assigned, etc. This overhead may take enough time that the desired
sector has already passed under the write-head on the disk, thus requiring ancther
full one-sixth of a second for a complete disk revolution.

NOTES:

1. The CODOS system is carefully optimized to give fast loading of programs.
The FORMAT Utility program numbers the sectors on the disk such that sectors that
are numbered sequentially are physically located on alternating sectors on the
disk, as shown below:

#0 #13 #1 #1b #2 #15 #3 #16 [12 #25

The numbering of sectors in this fashion is called an "interleave" of 2. When
CODOS is transferring large blocks of information to or from disk starting at
sector (C, it sets up for the next DMA transfer of sector 1 while sector 13 is
passing under the head. If sector 1 was physically adjacent to sector 0, sector !
would already be under the head before the system was ready to actually perform the
transfer. This would mean that the disk could only access one sector per revolu-
tion instead of 13 sectors per revolution (for 26 sectors per track). Most of the
time @pent by CODOS is used to move data from the user's record to the system
buffer in the onboard DMA memory. Moving 256 bytes to or from the user's record to
the system buffer actually takes up virtually all the time available between the
end of the transfer of sector 0 and the beginning of the transfer for sector 1,
even with an interleave of 2. If interrupts occur during this time, the interrupt
service routine may easily steal esnough time so that CODOS can't complete the
tranafer in the time available. In this case, what 1is needed is an inereased
interleave, sc that two sectors intervene between sectors 0 and 1 on the disk
instead of 1. Then the timing requirements are relaxed and a large percent of the
time available can be spent in the interrupt service routine. Specifying the "3"
argument on the FORMAT command generates a disk with an interleave of 3 instead of
2. This will not impair operation of the system on that disk in any way; the
software and hardware do not care about the physical location of the sectors on the
track. The disk controller simply keeps searching till it finds the desired sector
number. The only consequence to normal operations is that program loading will be
somewhat slower. This difference will normally be imperceptible except for very
large programs. The "S" option will permit a large number of interrupts to be made
during disk accesses without a substantial performance degredation in thoughput.
The interleave can only be changed at the time the disk is formatted.

2: Note that the sample program uses the 6522 timer in the free-running,
interrupt mode. If the program does not complete properly for any reason, the
imer may continue to interrupt. You may need to RESET to clear this condition.

3. Sample rates up to TKHz have been obtained using this program. However,
for rates above UKHz, you should use a freshly formatted disk or one from which no
files have been deleted since it was last formatted.

4, Refer to section 5.6 in the Monomeg Single Board Computer Hardware Manual
for additional information on programming the 6522 I/0 interface chip and alternate
methods of contreolling the sample rate and connecting to the data source.

LISTING OF DATA AQUISITION DEMONSTRATION PROGRAM

DOCUMENTATION MTU 6502 ASSEMBLER 1.0

0002 0000 .PAGE 'DOCUMENTATION'

0003 0000 H CODOS DEMONSTRATION PROGRAM. 12/31/80 B. CARBREY

0004 0000 H 8/29/81 REVISED H. CHAMBERLIN
0005 0000 H

0006 0000 i HIGH SPEED, INTERRUPT-DRIVEN, DIRECT-TO-DISK DATA AQUISITION
0007 0000 :

0008 0000 H THIS PROGRAM USES A DOUBLE-BUFFERED, INTERRUPT SERVICE ROUTINE
0009 0000 H TO COLLECT DATA FROM PARALLEL PORT A OF A 6522 VIA AND STORE
0010 0000 3 IT ON A CODOS DISK FILE. THE 6522 TIMER IS USED TO SALPLE THE
0Cc11 0000 H PORT AT USER-DEFINED INTERVALS AND STORE THE DATA READ ON DISK.
0012 0000 H THE SAMPLING RATE FOR THE PORT CAN BE MODIFIED BY CHARGING THE
0013 0000 3 CONSTANT "DELAY" (APPROX. TIME BETWEEN SAMPLES IN MICROSECCNDS;
0014 0000 : AT THE END OF THE PROGRAM. THE TOTAL NUMBER OF SAMPLES TC 2B
0015 0000 : TAKEN CAN BE VARIED FROM 1 TO 65,535 BY ADJUSTING THE CON

0016 0000 1 "NSAMP" AT THE END OF THE PROGRAM. TEPENDING ON THE 3EEK

0017 0000 H AND HEAD LOAD TIME OF YOUR DISK DRIVES, THIS PROGR/AM CAN BE
0018 0000 ’ USED TC SAMPLE IN EXCESS OF 5000 BYTES PER SECOND WITHCUT LOSS
2019 C000 : OF DATA. TIF THE AQUISITICN RATE IS INCREASED BEYOND THE

0020 0000 : MAXIMUM RATE WHICH THE PROGRAM CAN HANDLE, THE PROGRAM WILL
0021 Q000 H ABORT WITH THE MESSAGE "BUFFER OVERRUN ERROR", INDICATING THAT
0022 0000 3 ONE BUFFER WAS FILLED BEFORE THE OTHER COULD BE EMPTIED TO DISK.
0023 0000 3

0024 0000 § FRERMTMPORTANT##%%% WHEN USING THIS PROGRAM BE SURE TO USE A
0025 0000 5 DISK WHICH HAS BEEN FORMATTED USING "FORMAT S" TO INCREASE THE
0026 0000 ; SKEW BETWEEN LOGICALLY ADJACENT SECTORS. IF YOU USZ A DISK
0027 0000 H FORMATTED WITH THE STANDARD SKEW THE ALLOWABLE AQUISITION RATE
0028 Q000 H WILL BE VERY LOW BECAUSE THE RELATIVELY LONG SERVICE ROUTINE
0029 0000 H WILL "STEAL"™ ENCUGH CYCLES FROM THE NORMAL CODOS WRITE-RECORD
0030 0000 i SVC THAT IT WILL NOT BE ABLE T® TRANSFER ALL THE BYTES FROM THE
0031 0000 H DOUBLE BUFFER TC THE DMA BUFFER BEFORE THE READ-WRITE HEAD HAS
0032 0000 H PASSED THE DESIRED SECTOR, THUS REQUIRING ANOTHER FULL 1/6TH OF
0033 0000 i A SECOND FOR EACH SECTOR WRITTEN.

0034 0000 H

0035 0000 H IN ACTUAL PRACTICZ, THE SERVICE ROUTINE SHOULD BE SHORTENED AS
0036 0000 5 MUCH AS POSSIBLE AND THE BUFFERS MADE AS LARGE AS POSSIBLE, TO
0037 0000 3 MAXIMIZE THE CONTINUOUS THROUGHPUT TO THE DISK. SHORTENING THE
0038 0000 H SERVICE ROUTINE MAY BE EASY, BECAUSE MOST "REAL" DEVICES WILL
0039 0000 H PROVIDE THEIR OWN INTERRUPT (E.G., A/D), SO THAT THE TIMER WONT
0040 0000 H BE NEEDED, AND THE DECHEMENTING OF "COUNT" MAY NOT BE NEEDED.
0041 0000 } ALSO, PROPER HOOKUP TO THE 6522 WILL ALLOW THE ACT OF READING
0042 0000 : THE DATA REGISTER AL3C CLEAR THE INTERRUPT.

0043 0000 i

oQhu 0000 H THE MOST IMPORTANT FEATURE OF THIS PROGRAM IS THAT IT PROVES
0045 0000 : THAT YOU CAN INTERRUPT CODOS FREELY, EVEN DURING DISK

0046 0000 : OPERATIONS, WITHOUT ANY PROBLEMS.

Q047 0000 5

00U8 0000 3 *DIRECTIONS: BEFORE EXECUTING, WIRE YOUR INPUT SOURCE TO PORT
0049 0000 - A OF THE 6522. SET THE DESIRED SAMPLE FREQUENCY AND TOTAL

0050 0000 H NUMBER OF SAMPLES AT THE END OF THE PROGRAM. ASSIGN CHANNEL
0051 0000 H 6 TO THE DISK FILE DESIRED. BEGIN EXECUTION.

0052 0000 H

0053 0000 i THIS PROGRAM IS SET UP FOR PORT A OF THE USER PARALLEL PORT ON
0054 0000 } THE MTU-120 COMPUTER, BUT CAN EASILY BE RE~ASSEMBLED FOR OTHER

0055 0000 DEVICES OR OTHER ADDRESSES.

D=4

EQUATES AND PAGE 0

0056
0057
0058
0059
0060
0061
0062
063
co6Y
0065
G066
0067
0068
0069
0070
0071
0072
0073
o07Y
0075
0076
Q077
007

oeT7g
0080
0081
0082
083
0084
0085
0086
0087
0088
Q0Rg
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104

0000
0000
0000
0000
00BO
00B2
00BY4
OCEE
0000
0000
0000
BFDO
BFDO
BFD1
BFD2
BFD3
BFD4
BFD5
BFD6
BFDT
BFD8
BFD9
BFDA
BFDB
BrFRc
BFDD
BFDE
BFDF
0000
0000
0000
1000
0020
G030
3000
cQ50
0000
0000
0000
0000
0010
0012
00132
0015
0016
0017
0018
00EC
0019

wowouoH

[T L C AT I T T T I AT B U 1 1

[UR T I IR T

3

?

3
uo

U1

U2
SVCENB
H

¥

H

I0
UDRB
UDRAH
UDDRB
UDDRA
UTIL
UT1CH
UT1LL
UT1LH
UtaL
UT2H
USR
UACR
UPCR
UIFR
UIER
UDRA

T

'

BUFQ
NPAGE
BOPGLM
BUF1
B1PGLM
?

?

BUFPAG
YBUF
COUNT
BOFULL
B1FULL
DONE
INTYSV
INTASV

-PAGE

CODOS EQUATES. ..

MTU 6502 ASSEMBLER 1.0

'EQUATES AND PAGE O

$BO
U0+2
Ul+2
$EE

6522 VIA EQUATES...

LT T T T T T AV S PAT OV INET S ¢ S L L B U)

PROGRAM EQUATES...

EIBL I T | B 1

*O-PAGE RAM...¥

B’ o o ok kK ¥
yonouownowoHou

$BFDO
I0+0
I0+1
I0+2
I0+3
TO+4
T0+5
I0+6
I0+7
10+8
1049
I0+$A
10+3$B
T0+35C
10+$D
I0+$E
I0+$F

$1000
32

; PSEUDO REGISTER 0
;PSEUDO REGISTER 1
; PSEUDO REGISTER 2
;SVC ENABLE FLAG

;6522 ADDRESS FOR USER PORT
;PORT B DATA

;PORT A DATA

;PORT B DIRECTION

;PORT A DIRECTION

ITIMER 1...

;TIMER 2...

:SHIFT REG

: AUX CONTROL

; PERIPEERAL CONTROL

; INTERRUPT FLAGS

; INTERRUPT ENABLES

;PORT A DATA, NO HANDSHAKE

;BUFFER 0 STARTING ADDRESS
;NUMBER OF PAGES IN BUFFER 0 (8K BYTES)

BUF0/2564NPAGE ;PAGE LIMIT FOR BUFFER 0
256%NPAGE+BUFO;BUFFER 1 STARTING ADDRESS
BUF1/256+NPAGE

$10
*42
*41
*,.2
*41
L]
¥4
*q
$00EC

o]

;PAGE LIMIT FOR BUFFER 1

;#¥R0_PAGE ORG

;POINTER TO CURRENT BUFFER PAGE

;INDEX WITHIN CURRENT PAGE

JCOUNTER OF SAMPLES LEFT TO TAKE
:FLAG, BUFFER 0 IS FULL

;PLAG, BUFFER 1 IS FULL

;FLAG, ALL DATA SAMPLES TAKEN

;USED TO SAVE Y DURING INTERRUBT

;A SAVE LOCATION USED BY CODOS INT/BRK
s PROCESSOR

MAIN

0105
0106
0107
G108
0109
0110
o
0112
0113
0114
0115
0116
onT
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149

PROGRAM - INITIALIZATION

0019
0019
0019
0700
0700
0700
0700
0701
0703
0705
0707
9709
Q708
070D
070F
0711
0713
0715
0716
0719
0718
071D
0720
0722
0723
0725
0727
0729
072B
072D
072E
072F
0730
073¢
0730
0730
0732
0735
0737
073A
073D
0740
o743
Q746
0749

D8
A900
8510
A%10
8511
ACQO
8412
Bu1s
8416
8417
A900
38
EDUAOS
8513
A900
ED4B08
8514
38
GOEE
A9D3
8580
A907
§5B1
00
18
78

4900
8DD3BF
A9CO
8DDBBF
8DDEBF
ADLBO8
8DDLBF
AD4908
8DD5BF
58

1
DATAIN

v s ws

.PAGE

MTU 6502 ASSEMBLER 1.0

'MAIN PRCGRAM - INITIALIZATION'

$0700 ; *PROGRAM ORGH*

BEGIN EXECUTION HERE AFTER ASSIGNING CHANNEL & TO A FILE.

CLD
LDA
STA
LDA
STA
LDY
STY
STY
STY
STY
LDA
SEC
SBC
STA
LDA
SBC
STA
SEC
ROR
LDA
STA
LDA
STA
BRK
.BYTE
SEI

#BUF0&$FF

BUFPAG ;DEFINE PAGE POINTER FOR SERVICE ROUTINE

#BUF0/256

BUFPAG+1

#0

YBUF ;DEFINE INDEX WITHIN PAGE OF BUFFER
BOFULL sCLEAR ALL FLAGS...

B1FULL

DONE

#0 ;DEFINE STARTING COUNT QOF SAMPLES TO TAKE

;=2'S COMPLEMENT OF REQUESTED NUMBER
NSAMP
COUNT
#0
NSAMP+1
COUNT+1

;ENABLE CODOS 3vCS
SVCENB
#SERVC&S$FF
Uo 3SET UO = ADDRESS OF INTERRUPT SERVICE
#SERVC/256
Uo+1

24 ;SVC #24 = DEFINE IRQ VECTOR

SETUP 6522 TIMER IN FREE-RUNNING INTERRUPT MODE...

LDA
STA
LDA
STA
STA
LDA
STA
LDA
STA
CLI

#0

UDDRA ;SET DATA DIRECTICON = IN ON PORT
#3C0
UACR ;FREE RUN TIMER 1
UIER ;ENABLE TIMER INTERRUPTS
DELAY
UT1L ; LOAD DESIRED DELAY INTQ TIMER
DELAY+1
UT1CH ; ACTIVATE TIMER
;LET 'ER RIP!

MAIN PROGRAM - DISK WRITE LOOPS MTU 6502 ASSEMBLER 1.0

0150 OT4A ,PAGE ’'MAIN PROGRAM - DISK WRITE LOOPS'

0151 OT4A ; COME HERE WHEN WAITING FCR BUFFER 0 TO BE FILLED BY INTERRUPT
0152 0744 H SERVICE ROUTINE. SETUP FOR WRITE OF BUFFER O A3 CODOS RECORD.
0 OT4A :

0154 OTUA AQQO SETUPO LDA #0

0155 QTHC B8SBL STA U2 sDEFINE SIZE OF RECORD = ENTIRE BUFFER O...
0156 OT4E A920 LDA #INPAGE

0157 0750 85B5 STA U2+1

0158 0752 A900 LDA #BUFO&$FF

0159 0754 8582 STA U1 ;DEFINE START ADDR. OF RECORD = BUFFER 0
0160 0756 4910 LDA #BUF0/256

0161 0758 85B3 STA Utl+1

0162 O75A A206 LDX #6 ;DISK IS ON CHANNEL 6

0163 075C P

0164 075C) COME HERE TO TEST SEMAPHORES FROM IRQ SERVICE ROUTINE...

0165 Q75C 2415 WAITO BIT BOFULL +TEST "BUFFER 0 FULL" FLAG

0166 Q75E 3007 BMI WRITEO +BRANCH IF BUFFER IS FULL

Q167 OTE0 2417 BIT DONE ;ELSE TEST "AQUISITION DONE" FLAG

0158 0762 302F BMI FINIO ;EXIT 1IF DONE

0149 0764 4C5C07 JMP WAITO ; ELSE REPEAT

0170 0767 B

0171 0767 COME HERE WHEN BUFFER 0 IS FULL. WRITE IT TO DISK (CHAN 6)...

0767 00 WRITEO BRK
0768 10 _BYTE 16 :SVC #16 = WRITE RECORD

§ 0763 A900 LDA #0

0768 8515 STA BOFULL ;CLEAR "BUFFER 0 FULL"™ SEMAPHORE
076D
7 076D
076D
0179 076D AS00 LDA #0

076F 85BY STA uz ;DEFINE RECORD SIZE = WHOLE BUFFER 1
0771 A920 LDA #NPAGE

2 0773 8585 STA Uz2+1

0775 A900 LDA #BUF 1&$FF

0777 85B2 STA u1 :DEFINE RECORD START = BUFFER 1 ADDRESS
0779 A230 LDA #BUF1/25¢C

0778 B85B3 STA U1+1

077D A206 LDX #6 ; CHANNEL 6

O77TF ;

O77F F COME HERE TO TEST SEMAPHORES FOR BUFFER 1 FROM IRQ ROUTINE...
O77F 2416 WAIT! BIT B1FULL ;TEST "BUFFER 1 FULL"™ FLAG

0781 3007 BMI WRITE1 ;BRANCH IF FULL .

0783 2417 BIT DONE ;ELSE TEST "AQUISITION DONE" FLAG
0785 301E BMI FINII JEXIT IF THROUGH

0787 MHCTFOT JMP WAIT? ;ELSE REPEAT

0784 H

& O78A : COME HERE WHEN BUFFER 1 IS FULL. WRITE IT TO DISK.
0784 0O WRITE1 BRK

0788 10 .BYTE 16 1SVC 16 = WRITE RECORD TO CHANNEL
078C 4900 LDA #0

078E 8516 STA B1FULL ;CLEAR "BUFFER 1 FULL" FLAG

Q790 4CHAO7 JMP SETUPO ;GO REFILL BUFFER 0

793 5

0203 0793 H COME HERE WHEN FINISHED WHILE FILLING BUFFER O...

0204 2793

SETUP FOR NEXT WRITE FROM BUFFER 1...

-7

MAIN

0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
025
0226
0227
0228
0229
023¢
0231
0232
0233
0234
0235
0236
0237
0238
0239

PROGRAM - DISK WRITE LOOPS

0793
0795
0796
0798
079A
Q79C
O79E
07A0
o741
07A2
0745
07A5
Q745
07A7
0748
0744
07AC
Q7AE
0780
07B2
07B3
07B4
0784
07BY
0784
0786
QTBT
0788
0788
0789
O7BA
07BB
07BC
07D1
o7b2

A512
38

E900
85BL
AS11
E910
8585

A512

EJ900
85B4
A511
E930
8585

10

A206
o0
16

00
02
0z

4143, .
00
60

FINIO

FINI?

P
H
3
E¥ITOK

LDA
SEC
SBC
STA
LDA
SBC
STA
BRK
+BYTE
JMP

LDA
SEC
SBC
STA
LDA
SBC
STA
BRK
.BYTE

COME HE

LDX
BEK

MTU 6502 ASSEMBLER 1.0

YBUF ; RECALL INDEX TO NEXT BYTE IN BUF
#BUF0&$FF ; COMPUTE FRACTICNAL PAGE FILLEDR
U2 ;DEFINE RECORD SIZE...
BUFPAG+1
#BUF0/256
Uz+1
16 ;SVC 16 FOR FINAL WRITE OF PARTIAL RECORD
EXITOK
COME HERE WHEN FINISHED WHILE FILLING BUFFER 1...
YBUF ;RECALL INDEX TO NEXT BYTE IN BUF
#BUF 1&$FF ;COMPUTE FRACTIONAL PAGE FILLED
Uz ;DEFINE RECORD SIZE...
BUFPAG+1
#BUF1/256
U2+1
16 ;SVC 16 FOR FINAL WRITE OF PARTIAL RECORD
RE FOR NORMAL EXIT
#6 s CHANNEL 6
22 ;SVC 22 = FREE CHANNEL 6

.BYTE

BRK
.BYTE
.BYTE
.BYTE
.BYTE
.BYTE 0
RTS

2 ;SVC 2 = INLINE MESSAGE
2 5...ON CHANNEL 2

1 ;CARRTAGE RETURN
'ACQUISITION COMPLETE.!'

INTERRUPT

0240
o241
o242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
272
273
0274
0275
0276
0277
0278
0279
0280

0703
07D3
07D3
07Dh3
07D3
Q7D5%
Q718
07DB
070D
07DF
07EQ
07E2
Q7EL
Q7EE
07TE7
07EQ
C7EB
O7EC
O7EE

Q7F0

o7F2
07Fh
07F7
QTF7
0789
07FB
o7FC
QTFE
0800
0802
0504
08ou
0806
0806
0808
080A
o8oc
DBOE
080E
0810
0812

SERVICE ROUTINE

8418
ADDALBF
ADD1BF
Ak12
9110
c8
8412
Dozz2
A4
c8
co3e
DOOC
38
6615
2416
3031
A030
400408

€050
D009
38

6616
2415
3021
AO10

8u11

E613
DOOY
E614
FOO5

Ab18
ASEC
40

3

’

SERVC

V
SERV3

SERVS

SERVE

’
SEREND

.PACE

MTU 6502 ASSEMBLER 1.0

'INTERRUPT SERVICE ROUTINE'

INTERRUPT SERVICE ROUTINE FOR IRQ...

STY
LDA
LDA
LDY
STA
INY
STY
BNE
LDY
INY
CcPY
BNE
SEC
ROR
BIT
BMI
LDY
JMP

CPY
BNE
SEC
ROR
BIT
BMI
LDY

STY

INC
BNE
INC
BEQ

LDY
LBA
RTI

INTYSV
UTIL
UDRAH ~
YBUF
(BUFPAG),Y

YBUF
SERV6
BUFPAG+1

#BOPGLM
SERV3

BOFULL
B1FULL
OVERUN
#BUF1/256
SERVS

#B1PGLM
SERVS

B1FULL
BOFULL
OVERUN
#BUF0/256

BUFPAG+1

COUNT
SEREND
COUNT+1
FINI

INTYSV
INTASV

;SAVE Y, A SAVED IN INTASV BY CODOS
;CLEAR 6522'S INTERRUPT FLAG

;INPUT DATA BYTE FROM PORT

sRECALL INDEX TO BUFFER

;STORE BYTE INTO BUFFER

;BUMP INDEX

;SAVE INDEX

;BRANCH IF NOT CROSSING PAGE BOUNDARY
;ELSE RECALL HI BYTE OF BUFFER POINTER
; ADVANCE

;CHECK FOR END OF BUFFER 0O

;BRANCH IF NOT AT END QF BUFFER 0O

;ELSE SET "BUFFER O FULL" SEMAPHORE
;yTEST "BUFFER 1 FULL™ SEMAPHORE

;BRANCH IF OTHER BUFFER NOT EMPTIED YET
;ELSE SETUP POINTER TO OTHER BUFFER

;CHECK FOR END OF BUFFER 1
;BRANCH IF NOT AT END OF BUYFER 1

;ELSE SET "BUFFER 1 FULL" SEMAPHORE

3 TEST "BUFFER @ FULL™

; BRANCH IF OTHER BUFFER NOT EMPTIED YET
;ELSE SETUP FOR OTHER BUFFER

;REDEFINE POINTER TO START OF OTHER BUFFER

; INCREMENT 2'S COMP. OF SAMPLE COUNT
;GO RETURN IN NOT DONE

;GO SIGNAL CONPLETION IF INCREMENT TO ZERO
;RESTORE Y

:RESTORE A
;EXIT SERVICE ROUTINE

LTERNATE EXITS FROM SERVICE ROUTINE MTU 6502 ASSEMBLER 1.0

0281 0813 -PAGE '"ALTERNATE EXITS FROM SERVICE ROUTINE®
0282 0813 H
0283 0813 ; COME HERE WHEN DESIRED NUMBER OF SAMPLES HAVE BEEN INPUT
0284 0813 s
0285 0813 38 FINI SEC
0286 0814 6617 ROR DONE ;SET "DONE" SEMAPHORE
0287 0816 AQ00 LDA #0
0288 0818 8DDBBF STA UACR ;KILL TIMER INTERRUPTS
0289 081B AQUQ LDA #$40
029C¢ 081D B8DDEBF STA UIER
0291 0820 HCOEOQ8 JMP SEREND ;THEN NORMAL EXIT
0292 0823 H
0293 0823 ; COME HERE IN CASE OF BUFFER OVERRUN. DATA WAS AQUIRED FASTER
G294 0823 . THAN IT COULD BE WRITTEN TO DISK.
0295 0823 -
0296 0823 A%00 OVERUN LDA #0
0297 0825 8DDBBF STA UACR ;KILL TIMER INTERRUPTS
0298 0828 8DDEBF STA UIER
0299 082B 78 SEI
0300 082C 00 BRK
0301 082D 02 .BYTE 2 ;SVC 2 = MESSAGE
0302 082E Q2 BYTE 2 ;++-ON CHANNEL 2
0303 082F 0P BYTE 1 ;CR
0304 0830 4255.. .BYTE 'BUFFER OVERRUN ERROR.'
0305 0845 00 .BYTE O
0306 0846 00 BRK
0307 0847 00 .BYTE 0O sRETURN TO CODOS, SHOW REGS
0308 0848 :
0309 0848 ; *®#INSTALL DESIRED DELAY BETWEEN SAMPLES (MICROSECS), AND##%
0310 0848 ; ##*TOTAL NUMBER OF SAMPLES TO BE TAKEN HERE... *nw
0311 0848 i
0312 0848 FAOO0 DELAY .WORD 250 ;=4000 SAMPLES PER SECOND
0313 0844 50C3 NSAMP .WORD 50000 ;QUIT AFTER 50000 SAMPLES (12.5 SEC)
0314 084C ;
0315 084cC .END
0 ERRORS IN PASS 2

APPENDIX E

CODOS SYSTEM ADDRESSES

Table E-1 gives the addresses of certain important memory locations within the
J0DOS operating system nucleus which the advanced user may wish to examine or
modify. Casual modification of wvalues listed may crash the system and cause
unpredictable side effects. See sections 8 and 9 for further information.

TABLE E~-1: IMPORTANT CODOS SYSTEM ADDRESSES (HEXADECIMAL)

Address Size Description of contents

QQEC 1 Accumulator save during SVC or IRQ processaing.

DOED 1 Error number for user-defined error recovery.

OOEE 1 SVC enable flag.

603 3 Jump to warm re-entry point for CODOS Monitor.

E615 3 Jump te "REQUIRED SOFTWARE NOT LOADED" error message.
1621 3 Jump to console-character-out routine with CTRL-3/Q (XON7XOFF).
E6F3 e} Todays date {(as entered by operator from DATE command).
E74F 1 Number of disk drives in system, 1 to 4 (See Note 2).
E75C e Address+1 where last error was detected by CODOS.

E763 1 Cumulative count of soft disk read errors.

E764 1 Cumulative count of soft disk write errors.

ET65 1

Cumulative count of recaiirbrate commands issued to disk controller
during read/write error recoveries.

E766 1 Sector number for last disk error causing a recalibrate.
767 1 Track number for last disk error causing a recalibrate.
BE7T79 1 Flag. If bit 7 = 1 then system will ignore (continue after)

irrecoverable disk read errors (use a2 last resort only).

ET7A 1 Flag. If bit 7 = 1 then permits save command to overwrite an
existing file with the =ame name.

ET80 1 Flag. If bit 7 = 1 then program executing was invoked by SVC #13.

E788 1 Keyboard echo flag for CODOS. Set to $80 to enable echo.

E793 1 Current ASCII default file extension character ("C").
ET96 1 Current default drive number (Set by DRIVE command).
0238 1 Maximum record length for input line.

E798 1 Number of file names per line for FILES command (5 or less).
ET99 1 Number of bytes to dump per display line.

E7SF 1 ASCII character to be used in lieu of Backslash.

E7BE 2 Pointer to start of system input line buffer.

E7CO 2 Pointer to start of system output line buffer.

E7C2 2 Pointer to large transient buffer for COPYP, ETC.
E7CH 2 Size (NOT final address) of large transient buffer.
E7C6 2 Pointer to user-defined interrupt service routine.
E7C8 2 Pointer to user-defined error recovery routine.

0303 3 Jump executed when CNTRL-C is entered from console.

NOTES FOR TABLE E-1:

1. The above addresses are valid for CODOS 2.0 only and are subject to change
in future revisions,

2. The SYSGENDISK utility must be used if the system is to be <changed to
support more than 2 disk drives.

3. Additional parameter and subroutine addresses can be found in Chapters 8, 9,
10, and Appendix F.

E-2

NOTES FOR TABLE E-1:

1. The above addresses are valid for CODOS 2.0 only and are subject to change
in future revisions.

2. See Chapter 10 for a description of the requirements for Console and Device
input and output routines.

3. The SYSGENDISK utility must be used if the system is to be changed to
support more than 2 disk drives.

4, The flag for ignoring "strange" control keys is normally set sc that con-
trol codes such as CNTRL-L (for clearing the display) can be embedded harmlessly in
a CODROS command, See SVC #5 description for details.

5. Additional parameter and subroutine addresses can be found in Chapters 8, 9,

10, and Appendix F.

APPENDIX F

MTU= 130 STANDARD SYSTEM MEMORY MAP

Bank 0

Address Contents

FFOO-FFFF Bootstrap ROM, Vectors, Disk controller registers.

FEOO-FEFF CODOS System overlay RAM area.

E500-FDFF CODOS nucleus.

E300-ESFF CODOS Block-assignment tables for drives 1 and O and directory buf.

EDDO-E2FF Pool disk buffers 0, 1, and 2.

DD20~-DFFF 3V¢ Processor (see chap. 5)

DB0O-DD1F Command Processor {can be overlaid; change $D800 to non-$D8 if so).

D500-DTFF Pool disk buffers 5, 4, and 3. (can be overlaid if not used)

D300~-DUFF Optional pool buffers for 3- and 4-drive systems or UNUSED

D280-D2FF Printer driver or UNUSED (see chap. 10)

C5BO-D2TF Console I-0 dirver (can be overlaid if not using console)

CO00~CS5AF Screen Graphies Drivers or UNUSED (see chap. 9)

BEOO-BFFF System I-0 (or UNUSED ordinary RAM). Normally I-0 is enabled.

BY40O0-BDFF CODOS Utility area (when needed only)

AQQ0-B3FF Default Large Transient Buffer (when needed only)

0700-BDFF Normally Available RAM (or used by BASIC and BASIC program}.

06E0-06FF Tab stop table (up to 32 tab stops)

0600-08DF System cutput line buffer (224 decimal bytes)

05C0-05FF Function key legends (8 each, 8 bytes in length, see chap. 8)

0500-05BF System input line buffer (192 decimal bytes)

0400~04FF Function key strings (8 each, 32 bytes in length)

0306-03FF Jump table to I-0 routines, graphics, ete.

0303-0305 Jump to CNTRL/C processor

0300-0302 Jump to operating system warm reset entry

02FL-02FF Jump to IQR and BRK processor

Q2FA-02FC Jump to NMI processor

Q2F9 I-0 space enable semaphore (“SEEIQ")

02E0~-02F8 OPEN (reserved for more scratch)

02B0=-02DF Scratch ram used by Consule I-0 and graphics drivers

0280~02AF Scratch RAM for CODOS.

0240-027F OPEN (reserved for more global varaibles)

0200-~023F Global variables, constants & flags for Console I-0 and graphics
{see chap. &, 9, and 10)

0113=-01FF Stack.

0100-0112 CODOS bank switch/restore routine.

O00F0=-00FF Scratch RAM for conscle I-0.

00ED-00EF Global RAM used by CODOS

00C1-00EC Seratcn RAM used by CODOS nucleus, SVC Processor and Command Proc.

00BO-00C0O Pseudo registers UQ-U7 (or available RAM).

0000-00AF UNUSED

Bank 1

C00Q: 1-FBFF Bit-mapped CRT display RAM

FC50: 1-FDUF Backtrack buffer (for lines recalled by CNTRL-B).

FD50: 1-FFEF Standard 96-character ASCII font table for CRT.

F-1

APPENDIX G

SYNTAX DIAGRAMS FOR CODOS BUILT-IN COMMANDS

Figure (-2 provides syntax diagrams which unambiguously define how CODCS
built-in commands may be legally constructed. These diagrams are called Wirth
diagrams, in honor of Niklaus Wirth, who popularized the use of these diagrams in
order to define the Pascal programming language.

To construct a legal CODOS command, you may follow any path indicated by the
diagram. The rounded-enclosures and circles are CODOS keywords and delimiters
which must be entered exactly as shown. Rectangles enclose names of entities which
must be provided by the user. For example, figure G-1 shows a Wirth diagranm for a
BASIC language FOR statement. If you were to "read" this diagram "out loud", you
might read it as follows:

np BASTC 'FOR' statement is the keyword 'FOR', followed by a variable, followed
by an "=", followed by a value, followed by a 'TO' keyword, followed by a value,
optionally followed by the keyword "STEP' and a value."

FIGURE G-1: WIRTH DIAGRAM FOR BASIC "FOR" STATEMENT

TOR VARTABLE }- =) VALUE (70)—{ VALUE

(STEP > VALUE

—(AsSTaN }L j
1-[CHANNEL FILE j-—@_{ DRIVE ¥

DEVICE

BEGINOF CHANNEL

—{ BOOT }

=t
—)
A

—(COMPAREHFROM

f

O]

O]

e’

:

DISK

DO FILE e
DRIVE #

—{ DRIVE }— DRIVE # }

:

{ TC pommeme—{ CHANNEL

a DEVICE

—{ENDOE > [[CEANNEL 13

—-{FILES!‘{ i,}
oo W g7

—{ FREE l—-[:l CHANNEL } }

—CED—{FILE }-

[)
“(CHEE

GETLOC FILE pty

O)-{TTE]

al

§

@.' FILE j
® !

ﬁm
| PSR |
—{(MSG ,\--1 CHANNEL 1 - L

r

—{ ONKEY)

QPEN ((J

~{ PROTECT

B eI
—{ SAVE l-——% FILE !r 7 ~
ST YO |

(
L LJ FROM h F?ETJ

() () pest -1'! BANK }-J

G-5

SvC

@ FILE

° DRIVE #

CHANNEL

FILE}

O]

DEVICE |
CHANNEL

--CUNLC)CK)—[—‘ FILE ‘q]
©

—{ UNPROTECT }

Descriptions of Identifiers Used:

CHANNEL I-0 Channel number, 0 to 9.
Filename, 2 to 12 characters plus optional l-character extension.

Disk drive number, 0 to 3.

I

[w] [=] T C
53] =) bt o
- — e x
— < 3 2
Q T
=]

=

I-0 device name, 1 character.

N

ROM Starting address.

) Memery bank number, 0 to 3,

[

End address.
Destination address.
CHAR| An ASCII character.

A numeric expression evaluating between 0 and $FF.

e

Function key number, 1 to 8.
Entry point address.

The ASCII carriage return character, $0D.

o]
]

[ol B [=1 0 =1 I 2
215 B BB B 2
E N R I R 3 =
e fe) M .

APPENDIX H
MTU-130 CHARACTER CODE CHART

The MFU-130 Computer and CODOS uses the standard ASCII character code for all
internal operations. Special keys on the keyboard are given non-ASCII codes which
can be recognized by the fact that bit 7 is a 1 whereas all ASCII codes have bit 7
set to a zero.

CHAR GRAPHIC HOW CHAR GRAPHIC HOW
CCDE OR NAME GENERATED CODE OR NAME GENERATED
00 NUL CTRL/ SPACE 20 SPACE Space bar
01 SOH CTRL/ A 21 ! SHIFT/ 1t
02 STX CTRL/ B 22 v SHIFT/ *n
03 ETX CTRL/ C 22 4 SHIFT/ 3#
04 EOT CTRL/ D 28 % SHIFT/ 4%
05 ENG CTRL/ E 25 % SHIFT/ 5%
06 ACK CTRL/ F 26 & SHIFT/ T&
o7 BEL CTRL/ G 27 ! L

08 BS BACKSPACE 28 SHIFT/ 9(
09 HT TAB 29) SHIFT/ 0)
CA LF LINE FEED 245 #* SHIFT/ 8%
0B VT CTRL/ X 2B+ SHIFT/ =+
0C FF CTRL/ L 26 <

0D CR RETURN 2D - s

0E SO CTRL/ N 2E 53

OF SI CTRL/ O 2F 7 12

10 DLE CTRL/ P 30 0 0)

11 DCY CTRL/ Q 31 1 1!

ie pC2 CTRL/ R 32 2 2 @

1 DC3 CTRL/ S 33 3 3 #

14 Dch CTRL/ T 3L 4

15 NAK CTRL/ U B 5 5 %

1 SYN CTRL/ V 36 6 6 carret
17 ETB CTRL/ W 377 7 &

18 CAN CTRL/ ¥ 38 38 8 *

19 EM CTRL/ ¥ 3% 9 9 (

1A suB CTRL/ Z 3 SHIFT/ 3@
18 ESC ESC | s 2

1 FS CTRL/SHIFT/ ,{ ¢ 1 SHIFT/ ,{
1 GS CTRL/ =+ 3D = =+

1E RS CTRL/SHIFT/ .» 3E 3 SHIFT/ .>
1F VS CTRL/SHIFT/ /% IF 2 SHIFT/ /7

GRAPHIC HOW CHAR GRAPHIC HOW

7
§

OR NAME GENERATED CODE OR NAME GENERATED

€ SHIFT/ 28 60 - “»

A SHIFT/ A 61 a A

B SHIFT/ B 62 b B

¢ SHIFT/ C 63 ¢ ¢

D SHIFT/ D 64 d D

E SHIFT/ & 65 e £

F SHIFT/ F 66 £ F

G SHIFT/ G 67 g G

H SHIFT/ H 58 h H

b SHIFT/ I 69 1 I

J SHIFT/ J 64 3 J

K SHIFT/ K 6B " 4

L SHIFT/ L 6C 1 L

M SHIFT/ M 6D m 1y

N SHIFT/ N 6E n N

0 SHIFT/ O 6F o 0

P SHIFT/ P 70 p P

Q SHIFT/ @ 71 q 0

R SHIFT/ R 72 r R

S SHIFT/ S 73 s s

T SHIFT/ T T4 t i

il SHIFT/ U 75 u if

v SHIFT/ V 76 v v

W SHIFT/ W 77 W W

X SHIFT/ X 78 x X

Y SHIFT/ Y 79 y Y

7 SHIFT/ Z 74 z Z

C C3 7B { §

N\ N\ C ! SHIFT/

1 SHIFT/ [7 70 } SHIFT/

A~ SHIFT/ 6 7B o SHIFT/
SHIFT/ - TF DEL RUBOUT

i
|

CHAR GRAPHIC HOW

CODE OR NAME GENERATED

80 1

81 f2
32 f3
83 i

8y £5
85 £6

86 £7

87 8

88 PF1
89 PF2
84 X

8B i

8¢ -

&p +

8E ENTER
8F

Q0 SHIFT/
91 SHIFT/
92 SHIFT/
93 SHIFT/
g4 SHIFT/
95 SHIFT/
96 SHIFT/
97 SHIFT/ f
38 SHIFT/
99 SHIFT/
gA SHIFT/
9B SHIFT/
9C SHIFT/
9D SHIFT/
9B SHIFT/
gF

Code values from $CO through
by the MTU-130 keybeard.

+
ENTER

$FF have no

GRAPHIC HOW

OR NAME GENERATED

cursor
cursor
cursor
eursor
HOME

DELETE
INSERT

SHIFT/
SHIFT/
SHIFT/
SHIFT/
SHIFT/
SHIFT/
SHIFT/

defined function and may not

H-3

up
left
right
down

cursor up
cursor left
cursor right
cursor down
HOME

DELETE
INSERT

be generated

APPENDIX I
USING EXTENDED MEMORY ADDRESSING

The MTU-130 computer and CODOS 2.0 both support extended memory addressing
beyond the normal 64K limit of the 6502 microprocessor. This feature is implement-
ed such that it is completely transparent to the programmer (even machine language
programmer) if it is not used. It is important to realize that the extended
addressing feature is 223 a slmple bank switching scheme. Instead it is driven by
the addressing mode used by instructions and actually allows a single program plus
its data to exceed 64K without programmer hardship. Hardware level programming
details of the extended memory addressing feature may be found in section 4.5 of
the Moncmeg Single Board Computer hardware manual.

The 256K addressing capacity of the MTU-130 is divided into four banks of 6UK
bytes each. Bank 0 is the normal or system bank which is automatically selected
and assumed when a bank is not apecified or the programmer wishes to ignore
extended addressing. Bank O is also special because it contains the CODOS3 oper-
ating system, display and kKeyboard I/O drivers, all of the system I1/0 addresses,
the system parameter area, and most importantly, the stack and the base (zero)
page. All of the memory maps and system addresses given in this manual refer to
locations in bank 0 unless otherwise noted. Even with this heavy usage, the amount

of memory left to the user in bank 0 is as large or larger than on other competi-
tive 6502 based systems.

The simplest use of extended addressing by an assembly language program is to
specify a data bank that is different from 0. In this usage, the user program
still resides In bank 0O but now any large data arrays are stored in another bank
thus allowing the actual program to become much larger. The data bank is set by
the program by altering the least significant two bits of location BFEO. The
settings are 11 for bank 0, 10 for bank 1, 01 for 2, and 00 for 3. When changing
the data bank select bits, be careful not to disturb any of the other bits. Now
that the data bank is set differently from the program bank (which is still 0), any
instructicn using the (INDIRECT,X) addressing mode or the (INDIRECT),Y addressing
mode will refer to the selected data bank for its data (the indirect address point-
er is still in page O of bank 0 as always). The execution of all other "normally
fetched” 6502 instruetions is unaffected by the data bank selection. After a
little thought and study of the 6502 instruction set it should be obvious that
these two addressing modes must be used for addressing large (greater than 256)

data arrays and are seldom if ever used for addressing small lists or individual
datums.

The CODOS SVC facility may be freely used with the data bank set to anything
(except SVC #15 and #16) since the SVC processor will —save and restore the data
bank setting. SVC #15 (read record) and #16 (write record) will transfer to/from
memory in the data bank that was selected when the SVC was executed. This provides
an ideal way of saving or retrieving those large data arrays on disk.

It is also possible to run an assembly language program in a bank other than
bank 0. When CODOS starts a user program, it will automatically select the correct
program bank and will also set the data bank equal to the program bank. The
program bank may also be set by the user program by altering bits 2 and 3 of
location BFEC to 11 for bank O, 10 for 1, G1 for 2, and 00 for bank 3. Program
bank selection generally affects all memory references made during program execu-

tion except those described previously in connection with the data bank. There are
other exceptions deseribed in the next paragraph,

I-1

Program bank selection does not affect references to page 0 or the stack
however. Thus page 0 and the stacE—Tpage 1) always reside in bank 0 regardless of
what the program bank is set to. This is useful if one wishes to jump between
banks since the code that modifies the program bank and then jumps into the new
bank will not be affected by any intermediate setting of the program bank select
bits. Actually, Jjumping between bank 0 and the user's program bank may be fairly
frequent since CODOS imposes the fellowing restrictions on program bank usage:

1. SVCs may only be issued by a program running in bank O.
2. The standard display driver and keyboard subroutines reside in bank 0.

3. The 1/0 registers are in bank 0 (although you could reach them indirectly by
temporarily setting the data bank to 0).

Because of these restrictions, it is recommended that bank 0 be used for program
storage unless the program becomes so large that 1t cannot fit. If it does over-
flow, the main program should stay in bank 0 with large subroutines moved to
another bank.

When an interrupt is recognized (either IRQ, NMI, or a BRK instruection), an
"interrupt mode flip-flop" is set which temporarily forces the program bank to O
but leaves the data bank selection in effect. Therefore, interrupt service
routines must also reside in bank 0. The effect of the program bank is restored
when an RTI instruction is executed. If the interrupt service routine uses
instructions affected by the data bank selection, it will be necessary for the
program to save and restore the data bank selection.

APPENDIX J
EFFECT OF CONSOLE INTERRUPT AND RESET

The MTU-130 console Keyboard has three keys in the extreme upper right corner
that control the system Reset function and the Non-maskable interrupt. The foilouw-
ing describes what CODOS does and does not do in response to pressing these keys.

Interrupt Key

The Interrupt key (labelled INT) unconditionally triggers a non-maskable inter-
rupt sequence in the 6502 microprocessor when it is pressed. This dinterrupt will
unconditionally interrupt any running program, even CODOS itself, and jump to $029A
which in turn normally contains a jump to the CODOS NMI processor unless a user-
defined NMI service routine is wused instead. CODOS's non-maskable interrupt
service entry point does the following:

1. Assigns channel 2 to the conscle display and channel 1 to the keyboard.

2. Prints the letters "NMI" and then the registers which represent the machine
state at the time of interrupt (see REG command in Chapter 3).

3. Waits for the operator to enter a CODOS command.

Program execution can be safely resumed at the peint of interruption by entering
the NEXT command gﬁ the following is true:

1. The program expects channels 1 and 2 Lo be assigned tc the conscle.

2. There is no chance that an SVC was being executed at the time of interrunt.

3, That the point of interruption did not occur in the system or the I1-0 drivers.
Note that execution of certain illegal opcodes will freeze the 6502 CPU and make it
unresponsive to the INT key. In this case the RESET key is the only way to restore
control.

Reset Key
The Reset key (labelled RESET) unconditicnally triggers a system reset when it
is released after having been pressed for at least 1/4 second. Pressing Reset for
less than 1/4 second (perhaps by accident), will have no effect. The following
hardware related events happen in response to Reset:

1. All system 1/0 ports {including the user parallel port) revert to inputs.

2. The Reset signal on the User parallel I/0 port connector goes low.

3. The display turns on and reverts to 480x256 black and white.

4, The Program and Data banks revert to bank 0.

5, The disk controller is reset.

6. The serial interface is reset.

7. The CPU enters the Bootstrap PROM on the Disk Controller board.

The bootstrap program in the PROM next looks at the state of the MOD key on the
keyboard. If the MOD key is pressed, it loads CODOS from the disk in drive 0 just
as if power had been turned on. Most of memory (except $CO00-$FFEF and
$00C3~-$00DF) is left alone however (see Appendix C).

If the MOD key is not pressed, the bootstrap program jumps to location $0300
which jumps to the "warm reset" entry point of CODOS which performs the following:

1. Clear decimal mode.
2. Discard stack (S=$FF).

3. Force all drives to "closed" status (does not update open files on disk} which
also forces any channels assigned to files to the "free"™ condition.

4., Forces console on channels 1 and 2.

5. Restores default drive to 0, banks to 0, default extension to "C", normal
error processing, and restores normal NMI, IRQ, and ¢cntl/C vector settings.

6. Re-initializes text display to normal (24 lines, 80 characters, normal video).
7. Opens drive 0.
8. Displays "RESET" on the console and then waits for a command.
NOTES: Does not re-initialize any I/0 drivers except the console. Any drivers that
1. use the parallel ports and do not set the direction registers and mode on
every character must be re-initialized. Any driver that uses the serial port
will have to be re-initialized.

2. Does not relaod CODOS, I/0 drivers, or other programs.

3. If Reset is pressed during disk writes, files on disk mayv be left in an
undefined state.

APPENDIX X

NON-OVERLAY CODOS COMMANDS

Most CODOS built in commands are loaded into memory from disk only as needed,
typically in less than one half second. These commands are called system overlays,
and reduce the size of the operating system by more than 4K bytes. Since the
overlays are not always in memory, it is normally necessary to maintain an open
disk in drive 0 with the CODOS overlays present. On rare occcasions you may wish
to operate without an open disk in drive O for some reason. The following CODOS

built in commands are not overlays and are always available whenever the CODOS
system has been booted-up:

BOOT
BP
CLOSE
DELETE
DRIVE
FREE
GET

GO
NEXT
QPEN
RESAVE
SAVE

